Thermal Annealing Characteristics of Detrital Zircon Fission Track Obtained from Natural Borehole Samples

Chang’e Cai, Nansheng Qiu, Jian Chang, Cleber Jose Soares, Hong Chen

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 45-56.

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (1) : 45-56. DOI: 10.1007/s12583-021-1512-1
Article

Thermal Annealing Characteristics of Detrital Zircon Fission Track Obtained from Natural Borehole Samples

Author information +
History +

Abstract

Previous studies proposed thermal simulation experiment to investigate the annealing characteristics of fission tracks in igneous zircon samples. However, basic research about detrital zircon fission track was relatively weak. This study discussed the initial track length, annealing temperature and annealing model of zircon fission track by using the measured track lengths obtained from natural borehole samples in the sedimentary basins with different thermal background. The results show that the initial track length of zircon fission track is 12.97 µm. The total annealing temperature (T total) of zircon fission track derived from the evolutionary curve of the mean track lengths is approximately 400 °C. The temperature ranges of 120–230 °C corresponds to the partial annealing zone (PAZ), and is lower than the range obtained through thermal annealing experiments. The annealing model is modified based on the measured track lengths. In addition, a functional formula about the mean track length, annealing temperature, and geological time is proposed, and the fitted values of track lengths consist with the measured track lengths in this study. By properly understanding the initial track length and annealing behavior of zircon fission track can provide a significant guidance for the study of hydrocarbon accumulation in sedimentary basins.

Keywords

zircon / detrital zircon fission track / initial track length / annealing temperature / annealing model / natural borehole sample

Cite this article

Download citation ▾
Chang’e Cai, Nansheng Qiu, Jian Chang, Cleber Jose Soares, Hong Chen. Thermal Annealing Characteristics of Detrital Zircon Fission Track Obtained from Natural Borehole Samples. Journal of Earth Science, 2022, 33(1): 45‒56 https://doi.org/10.1007/s12583-021-1512-1

References

Bernet M, Garver J I. Fission-Track Analysis of Detrital Zircon. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 205-237.
CrossRef Google scholar
Bernet M. A Field-Based Estimate of the Zircon Fission-Track Closure Temperature. Chemical Geology, 2009, 259(3/4): 181-189.
CrossRef Google scholar
Cai C E, Qiu N S, Li H L, . Study of the Closure Temperature of (U-Th)/He in Detrital Zircon Obtained from Natural Evolution Samples. Science China Earth Sciences, 2020, 63(3): 412-424.
CrossRef Google scholar
Chen Z Q, Shi G R. Late Paleozoic Depositional History of the Tarim Basin, Northwest China: An Integration of Biostratigraphic and Lithostratigraphic Constraints. AAPG Bulletin, 2003, 87(8): 1323-1354.
CrossRef Google scholar
Craddock W H, Moore T E, O’Sullivan P B, . Late Cretaceous-Cenozoic Exhumation of the Western Brooks Range, Alaska, Revealed from Apatite and Zircon Fission Track Data. Tectonics, 2018, 37(12): 4714-4751.
CrossRef Google scholar
Feng C G, Liu S W, Wang L S, . Present-Day Geothermal Regime in Tarim Basin, Northwest China. Chinese Journal of Geophysics, 2009, 52(11): 2752-2762
Galbraith R F, Laslett G M. Statistical Modelling of Thermal Annealing of Fission Tracks in Zircon. Chemical Geology, 1997, 140(1/2): 123-135.
CrossRef Google scholar
Garver J I. Etching Zircon Age Standards for Fission-Track Analysis. Radiation Measurements, 2003, 37(1): 47-53.
CrossRef Google scholar
Gong Y L, Wang L S, Liu S W, . Distribution Characteristics of Geotemperature Feild in Jiyang Depression, Shandong, North China. Chinese Journal of Geophysics, 2003, 46(5): 652-658.
CrossRef Google scholar
Green P F, Duddy I R, Gleadow A J W, . Thermal Annealing of Fission Tracks in Apatite: 1. A Qualitative Description. Chemical Geology: Isotope Geoscience Section, 1986, 59: 237-253.
CrossRef Google scholar
Guedes S, Moreira P A F P, Devanathan R, . Improved Zircon Fission-Track Annealing Model Based on Reevaluation of Annealing Data. Physics and Chemistry of Minerals, 2013, 40: 93-106.
CrossRef Google scholar
Hasebe N, Tagami T, Nishimura S. Towards Zircon Fission-Track Thermochronology: Reference Framework for Confined Track Length Measurements. Chemical Geology, 1994, 112(1/2): 169-178.
CrossRef Google scholar
Hu D, Tian Y T, Hu J, . Thermal Imprints of Late Permian Emeishan Basalt Effusion: Evidence from Zircon Fission-Track Thermochronology. Lithos, 2020, 352/353: 105224
CrossRef Google scholar
Ketcham R A. The Role of Crystallographic Angle in Characterizing and Modeling Apatite Fission-Track Length Data. Radiation Measurements, 2005, 39(6): 595-601.
CrossRef Google scholar
Li H L, Qiu N S, Jin Z J, . Geothermal History in the Tarim Basin. West China Petroleum Geosciences, 2005, 1(1): 15-18
Li B, Chen X H, Zuza A V, . Cenozoic Cooling History of the North Qilian Shan, Northern Tibetan Plateau, and the Initiation of the Haiyuan Fault: Constraints from Apatite- and Zircon-Fission Track Thermochronology. Tectonophysics, 2019, 751 109-124.
CrossRef Google scholar
Li L, Qiu N S. The Initiation and Tectonic Regimes of the Cenozoic Extension in the Bohai Bay Basin, North China Revealed by Numerical Modelling. Journal of Asian Earth Sciences, 2017, 140: 92-107.
CrossRef Google scholar
Jiang G Z, Gao P, Rao S, . Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 2016, 59(8): 2892-2910
Murakami M, Yamada R, Tagami T. Short-Term Annealing Characteristics of Spontaneous Fission Tracks in Zircon: A Qualitative Description. Chemical Geology, 2006, 227(3/4): 214-222.
CrossRef Google scholar
Palissari R, Guedes S, Curvo E A C, . Extrapolation of Zircon Fission-Track Annealing Models. Radiation Measurements, 2013, 50: 192-196.
CrossRef Google scholar
Piedrahita V A, Bernet M, Chadima M, . Detrital Zircon Fission-Track Thermochronology and Magnetic Fabric of the Amagá Formation (Colombia): Intracontinental Deformation and Exhumation Events in the Northwestern Andes. Sedimentary Geology, 2017, 356: 26-42.
CrossRef Google scholar
Qiu N S, Zuo Y H, Zhou X H, . Geothermal Regime of the Bohai Offshore Area, Bohai Bay Basin, North China. Energy Exploration & Exploitation, 2010, 28(5): 327-350.
CrossRef Google scholar
Qiu N S, Chang J, Zuo Y H, . Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 2012, 96(5): 789-821.
CrossRef Google scholar
Rahn M K, Brandon M T, Batt G E, . A Zero-Damage Model for Fission-Track Annealing in Zircon. American Mineralogist, 2004, 89(4): 473-484.
CrossRef Google scholar
Rahn M, Wang H J, Dunkl I. A Natural Long-Term Annealing Experiment for the Zircon Fission Track System in the Songpan-Garzê Flysch, China. Terra Nova, 2019, 31(3): 295-305.
CrossRef Google scholar
Ren J Y, Tamaki K, Li S T, . Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 2002, 344(3/4): 175-205.
CrossRef Google scholar
Ren J P, Wang J, Zhang D H, . Reactivation of Lufilian Arc in Zambia: Zircon and Apatite Fission Track Chronology. Earth Science, 2018, 43(6): 1850-1860
Shen T Y, Wang G C. Detrital Zircon Fission-Track Thermochronology of the Present-Day River Drainage System in the Mt. Kailas Area, Western Tibet: Implications for Multiple Cooling Stages of the Gangdese Magmatic Arc. Journal of Earth Science, 2020, 31(5): 896-904.
CrossRef Google scholar
Tagami T, Ito H, Nishimura S. Thermal Annealing Characteristics of Spontaneous Fission Tracks in Zircon. Chemical Geology: Isotope Geoscience Section, 1990, 80(2): 159-169
Tagami T, Carter A, Hurford A J. Natural Long-Term Annealing of the Zircon Fission-Track System in Vienna Basin Deep Borehole Samples: Constraints upon the Partial Annealing Zone and Closure Temperature. Chemical Geology, 1996, 130(1/2): 147-157.
CrossRef Google scholar
Tagami T. Zircon Fission-Track Thermochronology and Applications to Fault Studies. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 95-122.
CrossRef Google scholar
Tagami T, O’Sullivan P B. Fundamentals of Fission-Track Thermochronology. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 19-47.
CrossRef Google scholar
Tagami T, Matsu’ura S. Thermal Annealing Characteristics of Fission Tracks in Natural Zircons of Different Ages. Terra Nova, 2019, 31(3): 257-262.
CrossRef Google scholar
Wang L S, Li C, Liu S W, . Geotemperature Gradient Distribution of Kuqa Foreland Basin, North of Tarim, China. Chinese Journal of Geophysics, 2003, 46(3): 403-407
Xiao H Q, Liu Z, Zhao Y, . Characteristics of Geotemperature and Geopressure Fields in the Jiyang Depression and Their Significance of Petroleum Geology. Petroleum Exploration and Development, 2003, 30(3): 68-70
Yamada R, Tagami T, Nishimura S, . Annealing Kinetics of Fission Tracks in Zircon: An Experimental Study. Chemical Geology, 1995, 122(1/2/3/4): 249-258.
CrossRef Google scholar
Yamada R, Tagami T, Nishimura S. Confined Fission-Track Length Measurement of Zircon: Assessment of Factors Affecting the Paleotemperature Estimate. Chemical Geology, 1995, 119(1/2/3/4): 293-306.
CrossRef Google scholar
Yamada K, Tagami T, Shimobayashi N. Experimental Study on Hydrothermal Annealing of Fission Tracks in Zircon. Chemical Geology, 2003, 201(3/4): 351-357.
CrossRef Google scholar
Yamada R, Murakami M, Tagami T. Statistical Modelling of Annealing Kinetics of Fission Tracks in Zircon; Reassessment of Laboratory Experiments. Chemical Geology, 2007, 236(1/2): 75-91.
CrossRef Google scholar
Zhu X Q, Guo X W, Zhang X H, . Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau. Earth Science, 2018, 43(6): 1903-1920

Accesses

Citations

Detail

Sections
Recommended

/