PDF
Abstract
Whole rock elemental and Sr-Nd isotope geochemistry and in situ zircon Hf isotope geochemistry were used to identify the sources of the Neoproterozoic granites from the Socorro batholith, Socorro-Guaxupe Nappe (SGN), South Brasilia Orogen, Brazil. Zircon trace elements and Hf isotope geochemistry provided information about sources and crystallization (T, $f_{O_2}$) conditions. Three main types of granites built the bulk of the batholiths, beginning with probably pre-collisional ∼640–630 Ma charnockites, and ending with ∼610 Ma voluminous post-collisional high-K calc-alkaline (HKCA) I-type granites (Braganca Paulista-type). Several types of leucogranites were generated from 625 to 610 Ma, spanning the interval from collisional to post-collisional tectonics. Two charnockite bodies occur in the study area: the ∼640 Ma Socorro charnockite has remarkable chemical similarities with Braganca Paulista-type granites, but higher ε Nd(t)= −6.1 and average zircon ε Hf(t)= −9.1 and lower 86Sr/87Srt (0.709 3) values, indicative of more juvenile and water-poor source. The ∼633 Ma Atibaia charnockite has distinct geochemical signature (lower Mg# and Sr content; higher Zr), more negative ε Nd(t)= −14.1, similar average zircon ε Hf(t)= −8.9, and much higher 86Sr/87Srt=0.719 7, probably reflecting a larger component from old crust. The predominant ∼610 Ma Braganca Paulista-type granites were emplaced in a post-collisional setting, and correspond to porphyritic biotite-hornblende monzogranites of high-K calc-alkaline character with 61 wt.%–67 wt.% SiO2, high Mg# (39–42), Sr/Y (19–40), La/Yb (12–69), highly negative ε Nd(t) (−12.3 to −12.9) and zircon ε Hf(t) (−12 to −17) and 87Sr/86Srt=0.711 9–0.713 1. These features are interpreted as indicative of magma generation in a thickened crust, where melts from enriched mantle sources emplaced in the lowermost crust, heated host old continental crust rocks (gneisses and granulites) and partially mixed with their melting products. Leucogranite plutons (SiO2>72 wt.%) occurring in the southern portion of the batholith have a range of geochemical and isotope signatures, reflecting melting of crustal sources in space and time between ∼625 Ma (Bocaina Pluton) and ∼610 Ma (Bairro da Pedreira Pluton). Highly negative ε Nd(t) (−16.2) and average zircon ε Hf(t)= −16, and high 87Sr/86Srt (0.715 6–0.717 1) are consistent with relatively old ortho- and paragneiss sources similar to those which generated regionally abundant migmatites and anatectic granites in the collisional to post-collisional setting.
Keywords
U-Pb dating
/
Socorro-Guaxupé Nappe
/
high-K calc-alkaline granites
Cite this article
Download citation ▾
Bárbara Bueno Toledo, Valdecir de Assis Janasi.
Petrogenesis of Granites from the Ediacaran Socorro Batholith, SE Brazil: Constraints from Zircon Dating, Geochemistry and Sr-Nd-Hf Isotopes.
Journal of Earth Science, 2021, 32(6): 1397-1414 DOI:10.1007/s12583-021-1494-z
| [1] |
Annen C, Blundy J D, Sparks R S J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 2006, 47(3): 505-539.
|
| [2] |
Artur A C. Complexo Granitóide Plurisserial Socorro: Geologia, Petrologia e Recursos Minerais, 2003, Rio Claro, SP: UNESP, 139
|
| [3] |
Barbarin B. A Review of the Relationships between Granitoid Types, their Origins and their Geodynamic Environments. Lithos, 1999, 46(3): 605-626.
|
| [4] |
Boehnke P, Watson B E, Trail D, . Zircon Saturation Re-revisited. Chemical Geology, 2013, 351: 324-334.
|
| [5] |
Bonin B. From Orogenic to Anorogenic Settings: Evolution of Granitoid Suites after a Major Orogenesis. Geological Journal, 1990, 25(3/4): 261-270.
|
| [6] |
Borisov A, Aranovich L. Rutile Solubility and TiO2 Activity in Silicate Melts: An Experimental Study. Chemical Geology, 2020
|
| [7] |
Boynton W V. Henderson P. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 1984 63e114
|
| [8] |
Campos Neto M C, Basei M A S, Alves F R, . Geologia da Folha Bragança Paulista—1: 50 000, 1984, S∼ao Paulo: Convênio SICCT/PRÓMINÉRIO-IG/USP, 162
|
| [9] |
Campos Neto M C, Basei M A S, Alves F R, . . A Nappe de Cavalgamento Socorro (SP-MG). Do 33° Congr. Bras. Geol., Rio de Janeiro, 1984, 4: 1809-1822.
|
| [10] |
Campos Neto M C, Basei M A S, Assis Janasi V D, . Orogen Migration and Tectonic Setting of the Andrelândia Nappe System: An Ediacaran Western Gondwana Collage, South of S∼ao Francisco Craton. Journal of South American Earth Sciences, 2011, 32(4): 393-406.
|
| [11] |
Campos Neto M C, Caby R. Terrane Accretion and Upward Extrusion of High-Pressure Granulites in the Neoproterozoic Nappes of Southeast Brazil: Petrologic and Structural Constraints. Tectonics, 2000, 19(4): 669-687.
|
| [12] |
Campos Neto M C, Caby R. Tectonic Constraint on Neoproterozoic High-Pressure Metamorphism and Nappe System South of S∼ao Francisco Craton, Southeast Brazil. Precambrian Research, 1999, 97: 3-26.
|
| [13] |
Carvalho B B, Sawyer E W, Janasi V A. Enhancing Maficity of Granitic Magma during Anatexis: Entrainment of Infertile Mafic Lithologies. Journal of Petrology, 2017, 58(7): 1333-1362.
|
| [14] |
Cashman K V, Sparks R S J, Blundy J D. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 2017, 355(6331): eaag3055
|
| [15] |
Castro A. The Off-Crust Origin of Granite Batholiths. Geoscience Frontiers, 2014, 5 1 63-75.
|
| [16] |
Chappell B W, White A J R, Wyborn D. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 1987, 28(6): 1111-1138.
|
| [17] |
Clemens J D, Stevens G, Bryan S E. Conditions during the Formation of Granitic Magmas by Crustal Melting—Hot or Cold; Drenched, Damp or Dry?. Earth-Science Reviews, 2020, 200(1): 102982
|
| [18] |
Clemens J D, Stevens G, Farina F. The Enigmatic Sources of I-Type Granites: The Peritectic Connexion. Lithos, 2011, 126 3/4 174-181.
|
| [19] |
Coelho M B, Trouw R A J, Ganade C E, . Constraining Timing and P-T Conditions of Continental Collision and Late Overprinting in the Southern Brasília Orogen (SE-Brazil): U-Pb Zircon Ages and Geothermo barometry of the Andrelândia Nappe System. Precambrian Research, 2017, 292(2): 194-215.
|
| [20] |
Collins W J, Huang H Q, Jiang X Y. Water-Fluxed Crustal Melting Produces Cordilleran Batholiths. Geology, 2016, 44(2): 143-146.
|
| [21] |
Collins W J, Murphy J B, Johnson T E, . Critical Role of Water in the Formation of Continental Crust. Nature Geoscience, 2020, 13(5): 331-338.
|
| [22] |
De la Roche H, Leterrier J, Grandclaude P, . A Classification of Volcanic and Plutonic Rocks Using R1-R2 Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 1980, 29(1/2/3/4): 183-210.
|
| [23] |
Debon F, Le Fort P. A Cationic Classification of Common Plutonic Rocks and Their Magmatic Associations: Principles, Method, Applications. Bulletin de Minéralogie, 1988, 111(5): 493-510.
|
| [24] |
DePaolo D J. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 1981, 53(2): 189-202.
|
| [25] |
Dickin A P. Radiogenic Isotope Geology, 2005 2nd Edition Cambridge: University of Cambridge Press
|
| [26] |
Ebert H D, Chemale F Jr., Babinski M, . Tectonic Setting and U/Pb Zircon Dating of the Plutonic Socorro Complex in the Transpressive Rio Paraíba do Sul Shear Belt, SE Brazil. Tectonics, 1996, 15(3): 688-699.
|
| [27] |
Farina F, Dini A, Davies J, . Zircon Petrochronology Reveals the Timescale and Mechanism of Anatectic Magma Formation. Earth and Planetary Science Letters, 2018, 495(3): 213-223.
|
| [28] |
Ferry J M, Watson E B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437.
|
| [29] |
Gromet P, Silver L T. REE Variations across the Peninsular Ranges Batholith: Implications for Batholithic Petrogenesis and Crustal Growth in Magmatic Arcs. Journal of Petrology, 1987, 28(1): 75-125.
|
| [30] |
Gualda G A R, Ghiorso M S, Lemons R V, . Rhyolite-MELTS: A Modified Calibration of Melts Optimized for Silica-Rich, Fluid-Bearing Magmatic Systems. Journal of Petrology, 2012, 53(5): 875-890.
|
| [31] |
Hackspacher P C, Fetter A H, Ebert H D, . Magmatismo Há ca. 660–640 Ma no Domínio Socorro: Registros de Convergência Pré-Colisional Na Aglutinaç∼ao do Gondwana Ocidental. Geologia USP Série Científica, 2003, 3(1): 85-96.
|
| [32] |
Harrison T M, Watson E B. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 1984, 48: 1467-1477.
|
| [33] |
Heilbron M, Pedrosa-Soares A C, Campos Neto M C, . Mantesso-Neto V, Bartorelli A, Brito Neves B B, . A Província Mantiqueira. Geologia do Continente Sul-americano: Evoluç∼ao da Obra de Fernando Flávio Marques de Almeida Ed, Beca, 2004 203-234
|
| [34] |
Heilbron M, Ribeiro A, Valeriano C M, . Heilbron M, Cordani U G, Alkmim F F, . Ribeira Belt. Chap. 15. San Francisco Craton, Eastern Brazil, 2017 277-302.
|
| [35] |
Heilbron M, Tupinambá M, Valeriano C M, . The Serra Da Bolívia Complex: The Record of a New Neoproterozoicarc-Related Unit at Ribeira Belt. Precambrian Research, 2013, 238: 158-175.
|
| [36] |
Hildebrand R S, Whalen J B. Arc and Slab-Failure Magmatism in Cordilleran Batholiths II—The Cretaceous Peninsular Ranges Batholith of Southern and Baja California. Geoscience Canada, 2014, 41(4): 399
|
| [37] |
Hildebrand R S, Whalen J B. The Tectonic Setting and Origin of Cretaceous Batholiths within the North American Cordillera: The Case for Slab Failure Magmatism and Its Significance for Crustal Growth. Geological Society of America Special Publicatiton, 2017 532
|
| [38] |
Hildreth W, Moorbath S. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 1988, 98 4 455-489.
|
| [39] |
Hu F Y, Ducea M N, Liu S W, . Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 2017, 7: 7058
|
| [40] |
Jagoutz O, Klein B. On the Importance of Crystallization-Differentiation for the Generation of SiO2-Rich Melts and the Compositional Build-up of Arc (and Continental) Crust. American Journal of Science, 2018, 318(1): 29-63.
|
| [41] |
Jagoutz O, Schmidt M W. The Formation and Bulk Composition of Modern Juvenile Continental Crust: The Kohistan Arc. Chemical Geology, 2012, 298/299(1): 79-96.
|
| [42] |
Janasi V A. Petrogênese de Granitos Crustais na Nappe de Empurr∼ao Socorro-Guaxupé (SP-MG): Uma Contribuiç∼ao da Geoquímica Elemental e Isotópica, 1999, S∼ao Paulo: Universidade de S∼ao Paulo, 304
|
| [43] |
Janasi V A. Elemental and Sr-Nd Isotope Geochemistry of Two Neoproterozoic Mangerite Suites in SE Brazil: Implications for the Origin of the Mangerite-Charnockite-Granite Series. Precambrian Research, 2002, 119(1/2/3/4): 301-327.
|
| [44] |
Janasi V A, Andrade S, Vasconcellos A C B C, . Timing and Sources of Granite Magmatism in the Ribeira Belt, SE Brazil: Insights from Zircon in situ U-Pb Dating and Hf Isotope Geochemistry in Granites from the S∼ao Roque Domain. Journal of South American Earth Sciences, 2016, 68(1): 224-247.
|
| [45] |
Janasi V A, Martins L, Vlach S R F. Detailed Field Work in Two Out Crops of the Nazaré Paulista Anatectic Granite, SE Brazil. Revista Brasileira de Geociências, 2005, 35(1): 99-110.
|
| [46] |
Janasi V A, Ulbrich H H G J. Late Proterozoic Granitoid Magmatism in the State of S∼ao Paulo, Southeastern Brazil. Precambrian Research, 1991, 51(1/2/3/4): 351-374.
|
| [47] |
Janasi V A, Vlach S R F, Neto M C C, . Associated A-Type Subalkaline and High-K Calc-Alkaline Granites in the Itu Granite Province, Southeastern Brazil: Petrological and Tectonic Significance. The Canadian Mineralogist, 2009, 47(6): 1505-1526.
|
| [48] |
Kemp A I S, Hawkesworth C J, Foster G L, . Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 2007, 315(5814): 980-983.
|
| [49] |
Laurent O, Björnsen J, Wotzlaw J F, . Earth’s Earliest Granitoids are Crystal-Rich Magma Reservoirs Tapped by Silicic Eruptions. Nature Geoscience, 2020, 13(2): 163-169.
|
| [50] |
Lee C-T A, Bachmann O. How Important is the Role of Crystal Fractionation in Making Intermediate Magmas? Insights from Zr and P Systematics. Earth and Planetary Science Letters, 2014, 393(B11): 266-274.
|
| [51] |
Leite R J, Janasi V A, Creaser R A, . The Late- to Postorogenic Transition in the Apiaí Domain, SE Brazil: Constraints from the Petrogenesis of the Neoproterozoic Agudos Grandes Granite Batholith. Journal of South American Earth Sciences, 2007, 23(2/3): 213-235.
|
| [52] |
Liégeois J P. Preface—Some Words on the Post-Collisional Magmatism. Lithos, 1998, 45 xv-xvii.
|
| [53] |
Liégeois J P, Navez J, Hertogen J, . Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids. the Use of Sliding Normalization. Lithos, 1998, 45(1/2/3/4): 1-28.
|
| [54] |
Martins L, Vlach S R F, Janasi V A. Reaction Microtextures of Monazite: Correlation between Chemical and Age Domains in the Nazaré Paulista Migmatite, SE Brazil. Chemical Geology, 2009, 261(3/4): 271-285.
|
| [55] |
Meira V T, García-Casco A, Juliani C, . The Role of Intracontinental Deformation in Supercontinent Assembly: Insights from the Ribeira Belt, Southeastern Brazil (Neoproterozoic West Gondwana). Terra Nova, 2015, 27(3): 206-217.
|
| [56] |
Miller C F, McDowell S M, Mapes R W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 2003, 31(6): 529-532.
|
| [57] |
Motta R G, Fitzsimons I C W, Moraes R, . Recovering P-T-t Paths from Ultra-High Temperature (UHT) Felsic Orthogneiss: An Example from the Southern Brasília Orogen, Brazil. Precambrian Research, 2021, 359: 106222
|
| [58] |
Moyen J-F, Laurent O, Chelle-Michou C, . Collision vs. Subduction-Related Magmatism: Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos, 2017, 277(4): 154-177.
|
| [59] |
Müntener O, Ulmer P. Arc Crust Formation and Differentiation Constrained by Experimental Petrology. American Journal of Science, 2018, 318(1): 64-89.
|
| [60] |
Mutch E J F, Blundy J D, Tattitch B C, . An Experimental Study of Amphibole Stability in Low-Pressure Granitic Magmas and a Revised Al-in-Hornblende Geobarometer. Contributions to Mineralogy and Petrology, 2016, 171(10): 1-27.
|
| [61] |
Naranjo A F S, Vlach S R F. On the Crystallization Conditions of the Neoproterozoic, High-K Calc-Alkaline, Bragança Paulista-Type Magmatism, Southern Brasília Orogen, SE Brazil. Brazilian Journal of Geology, 2018, 48(3): 631-650.
|
| [62] |
Oliveira M A F, De Assis Negri F Z ^A, . Archean and Paleoproterozoic Crust Generation Events, Amparo Complex and Serra Negra Orthogneiss in Southern Brasília Orogen, SE Brazil. Journal of South American Earth Sciences, 2019, 90(2): 137-154.
|
| [63] |
Oliveira M A F, Morales N, Fúlfaro V J, . Geologia da Quadrícula de Atibaia. Relatório Final, 1986 116
|
| [64] |
Pitcher W S. Keneth J H. Granite Type and Tectonic Environment. Mountains Building Processes, 1983, London: Acad. Press, 19-40.
|
| [65] |
Profeta L, Ducea M N, Chapman J B, . Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 2015, 5: 17786
|
| [66] |
Rocha B C, Moraes R, Möller A, . Magmatic Inheritance vs. UHT Metamorphism: Zircon Petrochronology of Granulites and Petrogenesis of Charnockitic Leucosomes of the Socorro-Guaxupé Nappe, SE Brazil. Lithos, 2018, 314/315(2): 16-39.
|
| [67] |
Salazar Mora C A, Campos Neto M D C, Basei M A S. Syn-Collisional Lower Continental Crust Anatexis in the Neoproterozoic Socorro-Guaxupé Nappe System, Southern Brasília Orogen, Brazil: Constraints from Zircon U-Pb Dating, Sr-Nd-Hf Signatures and Whole-Rock Geochemistry. Precambrian Research, 2014, 255(3): 847-864.
|
| [68] |
Sisson T W, Ratajeski K, Hankins W B, . Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661.
|
| [69] |
Tassinari C. As Idades das Rochas e dos Eventos Metamórficos da Porç∼ao Sudeste do Estado de S∼ao Paulo e sua Evoluç∼ao Crustal, 1988, S∼ao Paulo: Universidade de S∼ao Paulo, 236
|
| [70] |
Tedeschi M, Pedrosa-Soares A, Dussin I, . Protracted Zircon Geochronological Record of UHT Garnet-Free Granulites in the Southern Brasília Orogen (SE Brazil): Petrochronological Constraints on Magmatism and Metamorphism. Precambrian Research, 2018, 316(7): 103-126.
|
| [71] |
Toledo B B, Janasi V A, Silva L G R D. SHRIMP U-Pb Geochronology of the Socorro Batholith and Implications for the Neoproterozoic Evolution in SE Brazil. Brazilian Journal of Geology, 2018, 48(4): 761-782.
|
| [72] |
Trouw R A J, Peternel R, Ribeiro A, . A New Interpretation for the Interference Zone between the Southern Brasília Belt and the Central Ribeira Belt, SE Brazil. Journal of South American Earth Sciences, 2013, 48 43-57.
|
| [73] |
Valeriano C D M, Mendes J C, Tupinambá M, . Cambro-Ordovician Post-Collisional Granites of the Ribeira Belt, SE-Brazil: A Case of Terminal Magmatism of a Hot Orogen. Journal of South American Earth Sciences, 2016, 68(1): 269-281.
|
| [74] |
Virmond L A. Petrochronology of Anatectic Rocks from Nazaré Paulista (SP), Southern Socorro Guaxupé Nappe, 2019, S∼ao Paulo: Universidade de S∼ao Paulo
|
| [75] |
Watson E B, Harrison T M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 1983, 64(2): 295-304.
|
| [76] |
Wernick E, Didier J, Artur A C, . Caracterizaç∼ao da Zona Marginal Charnockítica do Complexo Socorro nos Arredores da Cidade Homônima, SP/MG. 33° Congresso Brasileiro de Geologia, 1984, 6: 2919-2934.
|
| [77] |
Wernick E, Hormann P K, Artur A C, . Aspectos Petrológicos do Complexo Granítico Socorro (SP/MG): Dados Analíticos e Discuss∼ao Preliminar. Revista Brasileira de Geociências, 1984, 14(1): 23-29.
|
| [78] |
Whalen J B, Hildebrand R S. Trace Element Discrimination of Arc, Slab Failure, and A-Type Granitic Rocks. Lithos, 2019, 348/349 11 105179
|
| [79] |
Zhao K, Xu X S, Erdmann S. Crystallization Conditions of Peraluminous Charnockites: Constraints from Mineral Thermometry and Thermodynamic Modelling. Contributions to Mineralogy and Petrology, 2017, 172 5 26
|