Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution

Asad Khan, Shah Faisal, Kyle P. Larson, Delores M. Robinson, Huan Li, Zaheen Ullah, Mark Button, Javed Nawab, Muhammad Farhan, Liaqat Ali, Muhammad Ali

Journal of Earth Science ›› 2023, Vol. 34 ›› Issue (1) : 70-85.

Journal of Earth Science ›› 2023, Vol. 34 ›› Issue (1) : 70-85. DOI: 10.1007/s12583-021-1482-3
Structural Geology

Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution

Author information +
History +

Abstract

The putative Jambil meta-carbonatites of Swat, northern Pakistan, occur as discrete intrusions into the Proterozoic Manglaur Formation, which are difficult to be distinguished from nearby calc-silicate marble because both rock types experienced regional metamorphism during Himalayan orogenesis that resulted in similar mosaic textures and mineral assemblages. Carbonatites are often significant repositories of economic mineral resources and, therefore, are important to be distinguished from calc-silicate marble. We present new geochemical and geochronology data to distinguish between the two rock types and interpret the petrogenesis and tectonic evolution of the Jambil meta-carbonatites. Whole rock chemical data from the Jambil meta-carbonatites show characteristically high rare earth element (REE), Sr contents and lack of negative Eu anomaly, consistent with average calcio-carbonatite values worldwide and an igneous origin. More than 0.5 wt.% SrO in the meta-carbonatites and SrO > 0.15 wt.% in constituent rock forming calcite are discriminating signatures of the Jambil meta-carbonatites. Chemically, the Jambil meta-carbonatites are relatively depleted in Rb, Nb, Ta, Ti, Zr and Hf, relatively enriched in Ba, Th, Sr, and have a high LREE/HREE ratio when normalized to primitive mantle. Their carbon and oxygen isotope compositions vary from −3.5‰ to −4.3‰ and from 9.7‰ to 12.3‰, respectively. These geochemical characteristics indicate generation of the carbonatites through small degree of partial melting from a carbonated eclogitic source. In-situ, U/Pb analysis of titanite indicates that the Jambil meta-carbonatites were emplacement at 438 ± 3 Ma. When combined with regional geological observations, we interpret the emplacement of the Jambil meta-carbonatites to have taken place during the Silurian back arc extension within greater Gondwana and mark a transition from a compressional tectonic regime, brought about by collision of microcontinental blocks along the northern margin of Gondwana, to post-orogenic extension in the waning stages of the pre-Himalayan Ordovician orogeny. Finally, in-situ 208Pb/232Th monazite dates (40.3−27.6 Ma) extracted from the meta-carbonatites are consistent with the Cenozoic metamorphism of the area.

Keywords

Swat N Pakistan / meta-carbonatites / geochemistry / LA-ICP-MS titanite & monazite U-Th/Pb geochronology / C and O isotopes / Gondwana margin

Cite this article

Download citation ▾
Asad Khan, Shah Faisal, Kyle P. Larson, Delores M. Robinson, Huan Li, Zaheen Ullah, Mark Button, Javed Nawab, Muhammad Farhan, Liaqat Ali, Muhammad Ali. Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution. Journal of Earth Science, 2023, 34(1): 70‒85 https://doi.org/10.1007/s12583-021-1482-3

References

Aleinikoff J N, Schenck W S, Plank M O, . Deciphering Igneous and Metamorphic Events in High-Grade Rocks of the Wilmington Complex, Delaware: Morphology, Cathodoluminescence and Backscattered Electron Zoning, and SHRIMP U−Pb Geochronology of Zircon and Monazite. Geological Society of America Bulletin, 2006, 118(1/2): 39-64.
CrossRef Google scholar
Anczkiewicz R, Oberli F, Burg J P, . Timing of Normal Faulting along the Indus Suture in Pakistan Himalaya and a Case of Major 231Pa/235U Initial Disequilibrium in Zircon. Earth and Planetary Science Letters, 2001, 191(1/2): 101-114.
CrossRef Google scholar
Barker D S. Carbonatite Volcanism. Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis, and Economic Potential. Mineralogical Association of Canada, Short Course, 1996, 24: 45-61.
Becker H, Altherr R. Evidence from Ultra-High-Pressure Marbles for Recycling of Sediments into the Mantle. Nature, 1992, 358(6389): 745-748.
CrossRef Google scholar
Bell K, Tilton G R. Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity. Journal of Petrology, 2001, 42(10): 1927-1945.
CrossRef Google scholar
Burg J P. Brown D, Ryan P D. The Asia-Kohistan-India Collision: Review and Discussion. Frontiers in Earth Sciences, 2011, Berlin Heidelberg: Springer, 279-309
Butt K A, Shah Z. Discovery of Blue Beryl from Ilum Granite and Its Implications on the Genesis of Emerald Mineralization in Swat District. Geological Bulletin University of Peshawar, 1985, 18: 75-81.
Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana: Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.
CrossRef Google scholar
Chakhmouradian A R, Mumin A H, Demény A, . Postorogenic Carbonatites at Eden Lake, Trans-Hudson Orogen (Northern Manitoba, Canada): Geological Setting, Mineralogy and Geochemistry. Lithos, 2008, 103(3/4): 503-526.
CrossRef Google scholar
Chang L L Y. Apatite in Non-Silicates. Rock Forming Minerals, 1998, 5B: 297-334.
Cherbal M, Yonezu K, Aissa D, . Metacarbonatite Rocks from Amesmessa Area (in Ouzzal Terrane), Hoggar Shield, Algeria. Journal of African Earth Sciences, 2019, 153: 268-277.
CrossRef Google scholar
Clague D A, Frey F A. Petrology and Trace Element Geochemistry of the Honolulu Volcanics, Oahu: Implications for the Oceanic Mantle below Hawaii. Journal of Petrology, 1982, 23(3): 447-504.
CrossRef Google scholar
Dalton J A, Wood B J. The Compositions of Primary Carbonate Melts and Their Evolution through Wallrock Reaction in the Mantle. Earth and Planetary Science Letters, 1993, 119(4): 511-525.
CrossRef Google scholar
Dasgupta R, Hirschmann M M, Dellas N. The Effect of Bulk Composition on the Solidus of Carbonated Eclogite from Partial Melting Experiments at 3 GPa. Contributions to Mineralogy and Petrology, 2005, 149(3): 288-305.
CrossRef Google scholar
Dasgupta R, Hirschmann M M, Withers A C. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 2004, 227(1/2): 73-85.
CrossRef Google scholar
Deer W, Howie R A, Zussman J. Single-Chain Silicates, 1997, London: Longman, 668
Deines P. Bell K. Stable Isotope Variations in Carbonatites. Carbonatites: Genesis and Evolution, 1989, London: Unwin Hyman, 301-359
Demény A, Ahijado A, Casillas R, . Crustal Contamination and Fluid/Rock Interaction in the Carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H Isotope Study. Lithos, 1998, 44(3/4): 101-115.
CrossRef Google scholar
DiPietro J A, Lawrence R D. Himalayan Structure and Metamorphism South of the Main Mantle Thrust, Lower Swat, Pakistan. Journal of Metamorphic Geology, 1991, 9(4): 481-495.
CrossRef Google scholar
DiPietro J A. Stratigraphy, Structure, and Metamorphism near Saidu Sharif, Lower Swat, Pakistan: [Dissertation], 1990, Oregon: Oregon State University
DiPietro J A. Metamorphic Pressure-Temperature Conditions of Indian Plate Rocks South of the Main Mantle Thrust, Lower Swat, Pakistan. Tectonics, 1991, 10(4): 742-757.
CrossRef Google scholar
DiPietro J A, Isachsen C E. U−Pb Zircon Ages from the Indian Plate in Northwest Pakistan and Their Significance to Himalayan and Pre-Himalayan Geologic History. Tectonics, 2001, 20(4): 510-525.
CrossRef Google scholar
DiPietro J A, Pogue K R, Lawrence R D, . Stratigraphy South of the Main Mantle Thrust, Lower Swat, Pakistan. Geological Society, London, Special Publications, 1993, 74(1): 207-220.
CrossRef Google scholar
Dong M L, Dong G, Mo X, . Geochemistry, Zircon U−Pb Geochronology and Hf Isotopes of Granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic Evolution along the Gondwana Margin. Lithos, 2013, 179: 36-47.
CrossRef Google scholar
Evans A M. Ore Geology and Industrial Minerals: An Introduction, 2009, New York: Blackwell Publishing
Faisal S, Larson K P, Cottle J M, . Building the Hindu Kush: Monazite Records of Terrane Accretion, Plutonism, and the Evolution of the Himalaya-Karakoram-Tibet Orogen. Terra Nova, 2014, 26(5): 395-401.
CrossRef Google scholar
Faisal S, Larson K P, King J, . Rifting, Subduction and Collisional Records from Pluton Petrogenesis and Geochronology in the Hindu Kush, NW Pakistan. Gondwana Research, 2016, 35: 286-304.
CrossRef Google scholar
Girard M, Bussy F. Late Pan-African Magmatism in the Himalaya: New Geochronological and Geochemical Data from the Ordovician Tso Morari Metagranites (Ladakh, NW India). Schweizerische Mineralogische und Petrographische Mitteilungen, 1999, 79: 399-418.
Gonçalves G O Jr., Lana C, Scholz R, . An Assessment of Monazite from the Itambé Pegmatite District for Use as U−Pb Isotope Reference Material for Microanalysis and Implications for the Origin of the “Moacyr” Monazite. Chemical Geology, 2016, 424: 30-50.
CrossRef Google scholar
Gürsu S. Petrogenetic and Tectonic Significance of Rift-Related Pre-Early Cambrian Mafic Dikes, Central Taurides, Turkey. International Geology Review, 2008, 50(10): 895-913.
CrossRef Google scholar
Hamilton, D. L., Bedson, P., Esson, J., 1989. The Behaviour of Trace Elements in the Evolution of Carbonatites. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 405–487
Hammouda T. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 2003, 214(1/2): 357-368.
CrossRef Google scholar
Hoernle K, Tilton G, Le Bas M J, . Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites: Mantle Recycling of Oceanic Crustal Carbonate. Contributions to Mineralogy and Petrology, 2002, 142(5): 520-542.
CrossRef Google scholar
Hong J, Ji W, Yang X, . Origin of a Miocene Alkaline-Carbonatite Complex in the Dunkeldik Area of Pamir, Tajikistan: Petrology, Geochemistry, LA-ICP-MS Zircon U−Pb Dating, and Hf Isotope Analysis. Ore Geology Reviews, 2019, 107: 820-836.
CrossRef Google scholar
Hogarth D D. Bell K. Pyrochlore, Apatite and Amphibole: Distinctive Minerals in Carbonatite. Carbonatites: Genesis and Evolution, 1989, London: Unwin Hyman, 105-148
Hou Z Q, Tian S, Yuan Z, . The Himalayan Collision Zone Carbonatites in Western Sichuan, SW China: Petrogenesis, Mantle Source and Tectonic Implication. Earth and Planetary Science Letters, 2006, 244(1/2): 234-250.
CrossRef Google scholar
Hu P Y, Li C, Wang M, . Cambrian Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc along the Gondwana Proto-Tethyan Margin. Journal of Asian Earth Sciences, 2013, 77: 91-107.
CrossRef Google scholar
Hu P Y, Zhai Q G, John B M, . Early Ordovician Granites from the South Qiangtang Terrane, Northern Tibet: Implications for the Early Paleozoic Tectonic Evolution along the Gondwanan Proto-Tethyan Margin. Lithos, 2015, 220/221/222/223: 318-338.
CrossRef Google scholar
Kapustin Y L. Mineralogy of Carbonatites, 1980, New Dehli: Amerind Publishing Company, 259
Khattak N, Akram M, Ullah K, . Recognition of Emplacement Time of Jambil Carbonatities from NW Pakistan-Constraints from Fission-Track Dating of Apatite Using Age Standard Approach (the S Method). Journal Of Himalayan Earth Sciences, 2004, 37: 127-138.
Kjarsgaard B A, Hamilton D L. Bell K. The Genesis of Carbonatites by Immiscibility. Carbonatites: Genesis and Evolution, 1989, London: Unwin Hyman, 388-404
Kylander-Clark A R C, Hacker B R, Cottle J M. Laser-Ablation Split-Stream ICP Petrochronology. Chemical Geology, 2013, 345: 99-112.
CrossRef Google scholar
Lanphere MA, Baadsgaard H. Precise K−Ar, 40Ar/39Ar, Rb−Sr and U/Pb Mineral Ages from the 27.5 Ma Fish Canyon Tuff Reference Standard. Chemical Geology, 2001, 175(3/4): 653-671.
CrossRef Google scholar
Larson, K. P., 2020. ChrontouR. [2022-12-01]. https://doi.org/10.17605/osf.io/p46mb
Larson K P, Ali A, Shrestha S, . Timing of Metamorphism and Deformation in the Swat Valley, Northern Pakistan: Insight into Garnet-Monazite HREE Partitioning. Geoscience Frontiers, 2019, 10(3): 849-861.
CrossRef Google scholar
Lastochkin E I, Ripp G S, Doroshkevich A G. Mineralogy of Metamorphosed Carbonatite of the Vesely Occurrence, Northern Transbaikal Region, Russia. Geology of Ore Deposits, 2011, 53(3): 236-247.
CrossRef Google scholar
Le Bas M J, Subbarao K V, Walsh J N. Metacarbonatite or Marble? —The Case of the Carbonate, Pyroxenite, Calcite-Apatite Rock Complex at Borra, Eastern Ghats, India. Journal of Asian Earth Sciences, 2002, 20(2): 127-140.
CrossRef Google scholar
Le Maitre R W, Streckeisen A, Zanettin B, . Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2005, Cambridge: Cambridge University Press
Lee W J, Wyllie P J. Experimental Data Bearing on Liquid Immiscibility, Crystal Fractionation, and the Origin of Calciocarbonatites and Natrocarbonatites. International Geology Review, 1994, 36(9): 797-819.
CrossRef Google scholar
Lee W J, Wyllie P J. Liquid Immiscibility between Nephelinite and Carbonatite from 1.0 to 2.5 GPa Compared with Mantle Melt Compositions. Contributions to Mineralogy and Petrology, 1997, 127(1): 1-16.
CrossRef Google scholar
Lee W J, Wyllie P J. Liquid Immiscibility in the Join NaAlSiO4−NaAlSi3O8−CaCO3 at 1 GPa: Implications for Crustal Carbonatites. Journal of Petrology, 1997, 38(9): 1113-1135.
CrossRef Google scholar
Lee W J, Wyllie P J. Processes of Crustal Carbonatite Formation by Liquid Immiscibility and Differentiation, Elucidated by Model Systems. Journal of Petrology, 1998, 39(11/12): 2005-2013.
CrossRef Google scholar
Li X Y, Li S Z, Yu S Y, . Early Paleozoic Arc-Back-Arc System in the Southeastern Margin of the North Qilian Orogen, China: Constraints from Geochronology, and Whole-Rock Elemental and Sr−Nd−Pb−Hf Isotopic Geochemistry of Volcanic Suites. Gondwana Research, 2018, 59: 9-26.
CrossRef Google scholar
Liu H C, Bi M W, Guo X F, . Petrogenesis of Late Silurian Volcanism in SW Yunnan (China) and Implications for the Tectonic Reconstruction of Northern Gondwana. International Geology Review, 2019, 61(11): 1297-1312.
CrossRef Google scholar
Lloyd F E, Woolley A R, Stoppa F, . Rift Valley Magmatism—Is there Evidence for Laterally Variable Alkali Clinopyroxenite Mantle?. Geolines, 1999, 9: 76-83.
Manthilake M A G M, Sawada Y, Sakai S. Genesis and Evolution of Eppawala Carbonatites, Sri Lanka. Journal of Asian Earth Sciences, 2008, 32(1): 66-75.
CrossRef Google scholar
McCrea J M. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. The Journal of Chemical Physics, 1950, 18(6): 849-857.
CrossRef Google scholar
McDonough W F, Sun S S. The Composition of the Earth. Chemical Geology, 1995, 120(3/4): 223-253.
CrossRef Google scholar
Metcalfe I. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 2013, 66: 1-33.
CrossRef Google scholar
Miller C, Thöni M, Frank W, . The Early Palaeozoic Magmatic Event in the Northwest Himalaya, India: Source, Tectonic Setting and Age of Emplacement. Geological Magazine, 2001, 138(3): 237-251.
CrossRef Google scholar
Moecher D P, Anderson E D, Cook C A, . The Petrogenesis of Metamorphosed Carbonatites in the Grenville Province, Ontario. Canadian Journal of Earth Sciences, 1997, 34(9): 1185-1201.
CrossRef Google scholar
Moghadam H S, Khademi M, Hu Z, . Cadomian (Ediacaran-Cambrian) Arc Magmatism in the ChahJam-Biarjmand Metamorphic Complex (Iran): Magmatism along the Northern Active Margin of Gondwana. Gondwana Research, 2015, 27(1): 439-452.
CrossRef Google scholar
Nakano T, Yoshino T, Shimazaki H, . Pyroxene Composition as an Indicator in the Classification of Skarn Deposits. Economic Geology, 1994, 89(7): 1567-1580.
CrossRef Google scholar
Natarajana M, Rao B B, Parthasarathy R, . 2.0 Ga Old Pyroxenite-Carbonatite Complex of Hogenakal, Tamil Nadu, South India. Precambrian Research, 1994, 65(1/2/3/4): 167-181.
CrossRef Google scholar
Nelson D R, Chivas A, Chappell B, . Geochemical and Isotopic Systematics in Carbonatites and Implications for the Evolution of Ocean-Island Sources. Geochimica et Cosmochimica Acta, 1988, 52(1): 1-17.
CrossRef Google scholar
Palin R M, Treloar P J, Searle M P, . U−Pb Monazite Ages from the Pakistan Himalaya Record Pre-Himalayan Ordovician Orogeny and Permian Continental Breakup. GSA Bulletin, 2018, 130(11/12): 2047-2061
Pearson D G, Boyd F R, Haggerty S E, . The Characterisation and Origin of Graphite in Cratonic Lithospheric Mantle: A Petrological Carbon Isotope and Raman Spectroscopic Study. Contributions to Mineralogy and Petrology, 1994, 115(4): 449-466.
CrossRef Google scholar
Platt R G, Woolley A R. The Carbonatites and Fenites of Chipman Lake, Ontario. Canadian Mineralogist, 1990, 28: 241-250.
Pogue K R, Wardlaw B R, Harris A G, . Paleozoic and Mesozoic Stratigraphy of the Peshawar Basin, Pakistan: Correlations and Implications. Geological Society of America Bulletin, 1992, 104(8): 915-927.
CrossRef Google scholar
Qasim M, Ding L, Khan M A, . Late Neoproterozoic-Early Palaeozoic Stratigraphic Succession, Western Himalaya, North Pakistan: Detrital Zircon Provenance and Tectonic Implications. Geological Journal, 2018, 53(5): 2258-2279.
CrossRef Google scholar
Qasim M, Khan M A, Haneef M. Stratigraphic Characterization and Structural Analysis of the Northwestern Hazara Ranges across Panjal Thrust, Northern Pakistan. Arabian Journal of Geosciences, 2015, 8(10): 7811-7829.
CrossRef Google scholar
Ray J S, Ramesh R. Rayleigh Fractionation of Stable Isotopes from a Multicomponent Source. Geochimica et Cosmochimica Acta, 2000, 64(2): 299-306.
CrossRef Google scholar
Ray J S, Ramesh R, Pande K. Carbon Isotopes in Kerguelen Plume-Derived Carbonatites: Evidence for Recycled Inorganic Carbon. Earth and Planetary Science Letters, 1999, 170(3): 205-214.
CrossRef Google scholar
Rehman H U, Seno T, Yamamoto H, . Timing of Collision of the Kohistan-Ladakh Arc with India and Asia: Debate. Island Arc, 2011, 20(3): 308-328.
CrossRef Google scholar
Şahin S Y, Aysal N, Güngör Y, . Geochemistry and U−Pb Zircon Geochronology of Metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: Implications for the Geodynamic Evolution of Cadomian Orogeny. Gondwana Research, 2014, 26(2): 755-771.
CrossRef Google scholar
Sajid M, Andersen J, Rocholl A, . U−Pb Geochronology and Petrogenesis of Peraluminous Granitoids from Northern Indian Plate in NW Pakistan: Andean Type Orogenic Signatures from the Early Paleozoic along the Northern Gondwana. Lithos, 2018, 318/319: 340-356.
CrossRef Google scholar
Samoilov V S. The Main Geochemical Features of Carbonatites. Journal of Geochemical Exploration, 1991, 40(1/2/3): 251-262.
CrossRef Google scholar
Santos R V, Clayton R N. Variations of Oxygen and Carbon Isotopes in Carbonatites: A Study of Brazilian Alkaline Complexes. Geochimica et Cosmochimica Acta, 1995, 59(7): 1339-1352.
CrossRef Google scholar
Schärer U. The Effect of Initial 230Th Disequilibrium on Young UPb Ages: The Makalu Case, Himalaya. Earth and Planetary Science Letters, 1984, 67(2): 191-204.
CrossRef Google scholar
Scoffin T P. An Introduction to Carbonate Sediments and Rocks, 1987, Glasgow: Blackie
Scogings A, Forster I. Gneissose Carbonatites in the Bull’s Run Complex, Natal. South African Journal of Geology, 1989, 92(1): 1-10
Searle M P, Treloar P J. Was Late Cretaceous — Paleocene Obduction of Ophiolite Complexes the Primary Cause of Crustal Thickening and Regional Metamorphism in the Pakistan Himalaya?. Geological Society, London, Special Publications, 2010, 338(1): 345-359.
CrossRef Google scholar
Sheikh L, Lutfi W, Zhao Z D, . Geochronology, Trace Elements and Hf Isotopic Geochemistry of Zircons from Swat Orthogneisses, Northern Pakistan. Open Geosciences, 2020, 12(1): 148-162.
CrossRef Google scholar
Smith D C. Eclogites and Eclogite-Facies Rocks, 1988, Amsterdam: Elsevier, 519
Smith J, Delaney J, Hervig R, . Storage of F and Cl in the Upper Mantle: Geochemical Implications. Lithos, 1981, 14(2): 133-147.
CrossRef Google scholar
Sommerauer J, Katz-Lehnert K. Trapped Phosphate Melt Inclusions in Silicate-Carbonate-Hydroxyapatite from Comb-Layer Alvikites from the Kaiserstuhl Carhonatite Complex (SW-Germany). Contributions to Mineralogy and Petrology, 1985, 91(4): 354-359.
CrossRef Google scholar
Spandler C, Hammerli J, Sha P, . MKED1: A New Titanite Standard for in situ Analysis of Sm−Nd Isotopes and U−Pb Geochronology. Chemical Geology, 2016, 425: 110-126.
CrossRef Google scholar
Staudigel H, Hart S R, Schmincke H U, . Cretaceous Ocean Crust at DSDP Sites 417 and 418: Carbon Uptake from Weathering Versus Loss by Magmatic Outgassing. Geochimica et Cosmochimica Acta, 1989, 53(11): 3091-3094.
CrossRef Google scholar
Taylor H P Jr., Frechen J, Degens E T. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 1967, 31(3): 407-430.
CrossRef Google scholar
Trull T, Nadeau S, Pineau F, . C-He Systematics in Hotspot Xenoliths: Implications for Mantle Carbon Contents and Carbon Recycling. Earth and Planetary Science Letters, 1993, 118(1/2/3/4): 43-64.
CrossRef Google scholar
Tucker M E, Wright V P. Carbonate Sedimentology, 1990, Oxford: Wiley Blackwell, 482
CrossRef Google scholar
Veizer J. Trace Elements and Isotopes in Sedimentary Carbonates. Reviews in mineralogy, 1983, 11: 265-300.
Veizer J, Lemieux J, Jones B, . Paleosalinity and Dolomitization of a Lower Paleozoic Carbonate Sequence, Somerset and Prince of Wales Islands, Arctic Canada. Canadian Journal of Earth Sciences, 1978, 15(9): 1448-1461.
CrossRef Google scholar
Veizer J, Plumb K, Clayton R, . Geochemistry of Precambrian Carbonates: V. Late Paleoproterozoic Seawater. Geochimica et Cosmochimica Acta, 1992, 56(6): 2487-2501.
CrossRef Google scholar
Veksler I V, Petibon C, Jenner G A, . Trace Element Partitioning in Immiscible Silicate-Carbonate Liquid Systems: An Initial Experimental Study Using a Centrifuge Autoclave. Journal of Petrology, 1998, 39(11/12): 2095-2104.
CrossRef Google scholar
Verhulst A, Balaganskaya E, Kirnarsky Y, . Petrological and Geochemical (Trace Elements and Sr−Nd Isotopes) Characteristics of the Paleozoic Kovdor Ultramafic, Alkaline and Carbonatite Intrusion (Kola Peninsula, NW Russia). Lithos, 2000, 51(1/2): 1-25.
CrossRef Google scholar
Viladkar S G, Subramanian V. Mineralogy and Geochemistry of the Carbonatites of the Sevathur and Samalpatti Complexes, Tamil Nadu. Journal of Geological Society of India, 1995, 45(5): 505-517
Vrublevskii V V, Morova A A, Bukharova O V, . Mineralogy and Geochemistry of Triassic Carbonatites in the Matcha Alkaline Intrusive Complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2018, 153: 252-281.
CrossRef Google scholar
Wallace M E, Green D H. An Experimental Determination of Primary Carbonatite Magma Composition. Nature, 1988, 335(6188): 343-346.
CrossRef Google scholar
Wang W, Cawood P, Pandit M, . Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 2020, 49(2): 228-232.
CrossRef Google scholar
Wang W, Cawood P A, Pandit M K, . No Collision between Eastern and Western Gondwana at Their Northern Extent. Geology, 2019, 47(4): 308-312.
CrossRef Google scholar
Wang X X, Zhang J, Santosh M, . Andean-Type Orogeny in the Himalayas of South Tibet: Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana. Lithos, 2012, 154: 248-262.
CrossRef Google scholar
Wang Y J, Xing X, Cawood P A, . Petrogenesis of Early Paleozoic Peraluminous Granite in the Sibumasu Block of SW Yunnan and Diachronous Accretionary Orogenesis along the Northern Margin of Gondwana. Lithos, 2013, 182/183: 67-85.
CrossRef Google scholar
Woolley A R, Kempe D R C. Bell K. Carbonatites: Nomenclature, Average Chemical Compositions, and Element Distribution. Carbonatites: Genesis and Evolution, 1989, London: Unwin Hyman, 1-14
Wyllie P J. Bell K. Origin of Carbonatites: Evidence from Phase Equilibrium Studies. Carbonatites: Genesis and Evolution, 1989, London: Unwin Hyman, 500-545
Wyllie P J, Huang W L. Peridotite, Kimberlite, and Carbonatite Explained in the System CaO−MgO−SiO2−CO2. Geology, 1975, 3(11): 621-624.
CrossRef Google scholar
Wyllie P J, Lee W J. Model System Controls on Conditions for Formation of Magnesiocarbonatite and Calciocarbonatite Magmas from the Mantle. Journal of Petrology, 1998, 39(11/12): 1885-1893.
CrossRef Google scholar
Xu C, Campbell I H, Allen C M, . Flat Rare Earth Element Patterns as an Indicator of Cumulate Processes in the Lesser Qinling Carbonatites, China. Lithos, 2007, 95(3/4): 267-278.
CrossRef Google scholar
Xu C, Chakhmouradian A R, Taylor R N, . Origin of Carbonatites in the South Qinling Orogen: Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 2014, 143: 189-206.
CrossRef Google scholar
Xu C, Kynicky J, Chakhmouradian A R, . Trace-Element Modeling of the Magmatic Evolution of Rare-Earth-Rich Carbonatite from the Miaoya Deposit, Central China. Lithos, 2010, 118(1/2): 145-155.
CrossRef Google scholar
Xu C, Kynicky J, Chakhmouradian A R, . A Case Example of the Importance of Multi-Analytical Approach in Deciphering Carbonatite Petrogenesis in South Qinling Orogen: Miaoya Rare-Metal Deposit, Central China. Lithos, 2015, 227: 107-121.
CrossRef Google scholar
Yang X M, Le Bas M J. Chemical Compositions of Carbonate Minerals from Bayan Obo, Inner Mongolia, China: Implications for Petrogenesis. Lithos, 2004, 72(1/2): 97-116.
CrossRef Google scholar
Yaxley G M, Brey G P. Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites. Contributions to Mineralogy and Petrology, 2004, 146(5): 606-619.
CrossRef Google scholar
Yaxley G M, Green D H. Experimental Demonstration of Refractory Carbonate-Bearing Eclogite and Siliceous Melt in the Subduction Regime. Earth and Planetary Science Letters, 1994, 128(3/4): 313-325.
CrossRef Google scholar
Ying J, Zhou X, Zhang H. Geochemical and Isotopic Investigation of the Laiwu-Zibo Carbonatites from Western Shandong Province, China, and Implications for Their Petrogenesis and Enriched Mantle Source. Lithos, 2004, 75(3/4): 413-426.
CrossRef Google scholar
Ying Y C, Chen W, Simonetti A, . Significance of Hydrothermal Reworking for REE Mineralization Associated with Carbonatite: Constraints from in Situ Trace Element and C−Sr Isotope Study of Calcite and Apatite from the Miaoya Carbonatite Complex (China). Geochimica et Cosmochimica Acta, 2020, 280: 340-359.
CrossRef Google scholar
Ying Y, Chen W, Lu J, . In situ U−Th−Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 2017, 290/291: 159-171.
CrossRef Google scholar
Zhang Q, Jiang Y H, Wang G C, . Origin of Silurian Gabbros and I-Type Granites in Central Fujian, SE China: Implications for the Evolution of the Early Paleozoic Orogen of South China. Lithos, 2015, 216/217: 285-297.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/