Possible South-Dipping Mesozoic Subduction at Southern Tethys Ocean-Constrained from Global Tectonic Reconstructions and Seismic Tomography

Peilong Yan, Nan Zhang, Huaiyu Yuan, Liang Qi, Xiaoxu Liu

Journal of Earth Science ›› 2023, Vol. 34 ›› Issue (1) : 260-279.

Journal of Earth Science ›› 2023, Vol. 34 ›› Issue (1) : 260-279. DOI: 10.1007/s12583-021-1466-3
Applied Geophysics

Possible South-Dipping Mesozoic Subduction at Southern Tethys Ocean-Constrained from Global Tectonic Reconstructions and Seismic Tomography

Author information +
History +

Abstract

The evolution of the Tethys Ocean involved several episodes of ocean opening (including the Paleo-Tethys and Neo-Tethys) along its southern margin as terranes rifting away from eastern Gondwana. These oceans were terminated by well observed north-dipping subduction as the same terranes accreted to southern Eurasia. However, the presence of south-dipping subduction, though geologically proposed by numerous studies, have generally been omitted in the reconstruction of Tethyan evolution. Here, we synthesize the Mesozoic south-dipping subduction evolutions in the global reconstruction and focus on two potential events located along the northern edges of Southwest Borneo Block and the Woyla Arc. We next evaluate their slab volumes after thermal diffusion in the current mantle. Fast velocity anomalies in the mantle beneath the same region are then converted to cold anomalies and their volumes are further estimated and compared to the volumes evaluated from these two Mesozoic south-dipping subduction. We further identify seismic fast velocity anomalies likely relevant to slab remnants of south-dipping Tethyan subduction in the present-day mantle beneath the Indian ocean and West Australia, and link them to arc systems in plate reconstructions. In addition, one more tectonic scenario relevant to the north-dipping subduction in our study region is also examined. We speculate the relationship and evolution between such south-dipping subduction and north-dipping subduction in the south of Tethys Oceans. The attempt to reconstruct intermittent south-dipping subduction systems in southern Tethys region represents an effort on assessing rifting mechanisms in the opening of the Tethys Ocean and break-up of eastern Gondwana.

Keywords

Tethys / south-dipping subduction / reconstruction / seismic prospecting

Cite this article

Download citation ▾
Peilong Yan, Nan Zhang, Huaiyu Yuan, Liang Qi, Xiaoxu Liu. Possible South-Dipping Mesozoic Subduction at Southern Tethys Ocean-Constrained from Global Tectonic Reconstructions and Seismic Tomography. Journal of Earth Science, 2023, 34(1): 260‒279 https://doi.org/10.1007/s12583-021-1466-3

References

Advokaat E L, Bongers M L M, Rudyawan A, . Early Cretaceous Origin of the Woyla Arc (Sumatra, Indonesia) on the Australian Plate. Earth and Planetary Science Letters, 2018, 498: 348-361.
CrossRef Google scholar
Auer L, Boschi L, Becker T W, . Savani: A Variable Resolution Whole—Mantle Model of Anisotropic Shear Velocity Variations Based on Multiple Data Sets. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 3006-3034.
CrossRef Google scholar
Barber A J, Crow M J, Milsom J S. Sumatra: Geology, Resources and Tectonic Evolution. Geological Society, London, Memoirs, 2005, London: The Geological Society, 31
Becker T W, Boschi L. A Comparison of Tomographic and Geodynamic Mantle Models. Geochemistry, Geophysics, Geosystems, 2002, 3(1): 1003
CrossRef Google scholar
Becker T W, Faccenna C. Mantle Conveyor beneath the Tethyan Collisional Belt. Earth and Planetary Science Letters, 2011, 310 3/4 453-461.
CrossRef Google scholar
Bennett J D, Bridge D M, Cameron N R, . The Geology of the Banda Aceh Quadrangle, Sunuttra (1:250 000), 1981, Bandung: Geological Research and Development Centre
Bergman S, Dunn D P, Krol L G. Rock and Mineral Chemistry of the Linhaisai Minette, Central Kalimantan, Indonesia and the Origin of Borneo Diamonds. The Canadian Mineralogist, 1988, 26: 23-43.
Breitfeld H T, Davies L, Hall R, . Mesozoic Paleo-Pacific Subduction beneath SW Borneo: U-Pb Geochronology of the Schwaner Granitoids and the Pinoh Metamorphic Group. Frontiers in Earth Science, 2020, 8: 568715
CrossRef Google scholar
Breitfeld H T, Hall R, Galin T, . A Triassic to Cretaceous Sundaland-Pacific Subduction Margin in West Sarawak, Borneo. Tectonophysics, 2017, 694 35-56.
CrossRef Google scholar
Butterworth N P, Talsma A S, Müller R D, . Geological, Tomographic, Kinematic and Geodynamic Constraints on the Dynamics of Sinking Slabs. Journal of Geodynamics, 2014, 73: 1-13.
CrossRef Google scholar
Cameron N R. The Stratigraphy of the Sihapas Formation in the North West of the Central Sumatra Basin. In Proceedings of 12th Annual Convention, June 7–8, 1983, Jakarta. The AAPG/Datapages Combined Publications Database: Indonesian Petroleum Association, 1983, 1: 43-65.
Cammarano F, Goes S, Vacher P, . Inferring Upper-Mantle Temperatures from Seismic Velocities. Physics of the Earth and Planetary Interiors, 2003, 138(3/4): 197-222.
CrossRef Google scholar
Candan O, Akal C, Koralay O E, . Carboniferous Granites on the Northern Margin of Gondwana, Anatolide-Tauride Block, Turkey—Evidence for Southward Subduction of Paleotethys. Tectonophysics, 2016, 683: 349-366.
CrossRef Google scholar
Cawood P A, Kröner A, Collins W J, . Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 2009, 318(1): 1-36.
CrossRef Google scholar
Chang S J, Ferreira A M G, Ritsema J, . Joint Inversion for Global Isotropic and Radially Anisotropic Mantle Structure Including Crustal Thickness Perturbations. Journal of Geophysical Research: Solid Earth, 2015, 120: 4278-1300.
CrossRef Google scholar
Cheng X, Wu H N, Diao Z B, . Paleomagnetic Data from the Late Carboniferous-Late Permian Rocks in Eastern Tibet and Their Implications for Tectonic Evolution of the Northern Qiangtang-Qamdo Block. Science China Earth Sciences, 2013, 56(7): 1209-1220.
CrossRef Google scholar
Davies L, Hall R, Armstrong R. Cretaceous Crust in SW Borneo: Petrological, Geochemical and Geochronological Constraints from the Schwaner Mountains. In Proceedings of 38th Annual Convention, May 21–23, 2014, Jakarta. The AAPG/Datapages Combined Publications Database: Indonesian Petroleum Association, 2014, 14: IPA14-G-025
de Jonge M R, Wortel M J R, Spakman W. Regional Scale Tectonic Evolution and the Seismic Velocity Structure of the Lithosphere and Upper Mantle: The Mediterranean Region. Journal of Geophysical Research, 1994, 99 12091-12108.
CrossRef Google scholar
Deal M M, Nolet G. Slab Temperature and Thickness from Seismic Tomography: 2. Izu-Bonin, Japan, and Kuril Subduction Zones. Journal of Geophysical Research: Solid Earth, 1999, 104(B12): 28803-28812.
CrossRef Google scholar
Deal M M, Nolet G, van der Hilst R D. Slab Temperature and Thickness from Seismic Tomography: 1. Method and Application to Tonga. Journal of Geophysical Research: Solid Earth, 1999, 104(B12): 28789-28802.
CrossRef Google scholar
Domeier M, Torsvik T H. Plate Tectonics in the Late Paleozoic. Geoscience Frontiers, 2014, 5(3): 303-350.
CrossRef Google scholar
Durand S, Debayle E, Ricard Y, . Seismic Evidence for a Change in the Large-Scale Tomographic Pattern across the D” Layer. Geophysical Research Letters, 2016, 43(15): 7928-7936.
CrossRef Google scholar
Durand S, Debayle E, Ricard Y, . Confirmation of a Change in the Global Shear Velocity Pattern at around 1 000 km Depth. Geophysical Journal International, 2017, 211(3): 1628-1639.
CrossRef Google scholar
French S W, Romanowicz B A. Whole-Mantle Radially Anisotropic Shear Velocity Structure from Spectral-Element Waveform Tomography. Geophysical Journal International, 2014, 199(3): 1303-1327.
CrossRef Google scholar
Fukao Y, Obayashi M. Subducted Slabs Stagnant Above, Penetrating Through, and Trapped below the 660 km Discontinuity. Journal of Geophysical Research: Solid Earth, 2013, 118(11): 5920-5938.
CrossRef Google scholar
Fukao Y, Obayashi M, Nakakuki T, . Stagnant Slab: A Review. Annual Review of Earth and Planetary Sciences, 2009, 37: 19-46.
CrossRef Google scholar
Gou, Y., Wang, Q., 2019. Closure of a short-Lived Paleo-Tethys Back-Arc Basin in the Lhasa Terrane: Constraints from the Sumdo Metamorphic Belt. In Proceedings of AGU Fall Meeting, San Francisco, CA. T41d-0289
Grand S P. Mantle Shear-Wave Tomography and the Fate of Subducted Slabs. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2002, 360(1800): 2475-2491.
CrossRef Google scholar
Gurnis M, Muller R D, Moresi L. Cretaceous Vertical Motion of Australia and the Australian- Antarctic Discordance. Science, 1998, 279(5356): 1499-1504.
CrossRef Google scholar
Hafkenscheid E, Wortel M J R, Spakman W. Subduction History of the Tethyan Region Derived from Seismic Tomography and Tectonic Reconstructions. Journal of Geophysical Research: Solid Earth, 2006, 111: B08401
CrossRef Google scholar
Hall R. Late Jurassic-Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 2012, 570/571 1-41.
CrossRef Google scholar
Hosseini K, Matthews K J, Sigloch K, . SubMachine: Web-Based Tools for Exploring Seismic Tomography and Other Models of Earth’s Deep Interior. Geochemistry, Geophysics, Geosystems, 2018, 19(5): 1464-1483.
CrossRef Google scholar
Houser C, Masters G, Shearer P, . Shear and Compressional Velocity Models of the Mantle from Cluster Analysis of Long-Period Waveforms. Geophysical Journal International, 2008, 174(1): 195-212.
CrossRef Google scholar
Hu J S, Liu L J, Faccenda M, . Modification of the Western Gondwana Craton by Plume-Lithosphere Interaction. Nature Geoscience, 2018, 11(3): 203-210.
CrossRef Google scholar
Ingalls M, Rowley D B, Currie B, . Large-Scale Subduction of Continental Crust Implied by India-Asia Mass-Balance Calculation. Nature Geoscience, 2016, 9(11): 848-853.
CrossRef Google scholar
Jiao X W, Shi Y R, Yang T S, . U-Pb Age of Detrital Zircons from Lower Cretaceous in Eastern Tethyan Himalaya and Its Paleogeography. Earth Science, 2021, 46(8): 2850-2859. (in Chinese with English Abstract)
Karato S I. Importance of Anelasticity in the Interpretation of Seismic Tomography. Geophysical Research Letters, 1993, 20(15): 1623-1626.
CrossRef Google scholar
Karato S I, Karki B B. Origin of Lateral Variation of Seismic Wave Velocities and Density in the Deep Mantle. Journal of Geophysical Research: Solid Earth, 2001, 106(B10): 21771-21783.
CrossRef Google scholar
Katsura T. Thermal Diffusivity of Olivine under Upper Mantle Conditions. Geophysical Journal International, 1995, 122(1): 63-69.
CrossRef Google scholar
Khan M A, Stern R J, Gribble R F, . Geochemical and Isotopic Constraints on Subduction Polarity, Magma Sources, and Palaeogeography of the Kohistan Intra-Oceanic Arc, Northern Pakistan Himalaya. Journal of the Geological Society, 1997, 154(6): 935-946.
CrossRef Google scholar
Koelemeijer P, Ritsema J, Deuss A, . SP12RTS: A Degree-12 Model of Shear- and Compressional-Wave Velocity for Earth’s Mantle. Geophysical Journal International, 2015, 204(2): 1024-1039.
CrossRef Google scholar
Lekić V, Romanowicz B. Inferring Upper-Mantle Structure by Full Waveform Tomography with the Spectral Element Method. Geophysical Journal International, 2011, 185(2): 799-831.
CrossRef Google scholar
Li Z X, Mitchell R N, Spencer C J, . Decoding Earth’s Rhythms: Modulation of Supercontinent Cycles by Longer Superocean Episodes. Precambrian Research, 2019, 323: 1-5.
CrossRef Google scholar
Li Z X, Powell C M. An Outline of the Palaeogeographic Evolution of the Australasian Region since the Beginning of the Neoproterozoic. Earth-Science Reviews, 2001, 53(3/4): 237-277.
CrossRef Google scholar
Li Z Y, Ding L, Lippert P C, . Paleomagnetic Constraints on the Mesozoic Drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia. Geology, 2016, 44(9): 727-730.
CrossRef Google scholar
Lu C, Grand S P. The Effect of Subducting Slabs in Global Shear Wave Tomography. Geophysical Journal International, 2016, 205(2): 1074-1085.
CrossRef Google scholar
Luan X W, Wang J, Liu H, . A Discussion on Tethys in Northern Margin of South China Sea. Earth Science, 2021, 46(3): 866-884. (in Chinese with English Abstract)
Mao W, Zhong S J. Slab Stagnation Due to a Reduced Viscosity Layer beneath the Mantle Transition Zone. Nature Geoscience, 2018, 11(11): 876-881.
CrossRef Google scholar
Matthews K J, Maloney K T, Zahirovic S, . Global Plate Boundary Evolution and Kinematics since the Late Paleozoic. Global and Planetary Change, 2016, 146: 226-250.
CrossRef Google scholar
Metcalfe I. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 2013, 66: 1-33.
CrossRef Google scholar
Montelli R, Nolet G, Dahlen F A, . A Catalogue of Deep Mantle Plumes: New Results from Finite-Frequency Tomography. Geochemistry, Geophysics, Geosystems, 2006, 7(11): Q11007
CrossRef Google scholar
Moulik P, Ekström G. An Anisotropic Shear Velocity Model of the Earth’s Mantle Using Normal Modes, Body Waves, Surface Waves and Long-Period Waveforms. Geophysical Journal International, 2014, 199 3 1713-1738.
CrossRef Google scholar
Müller R D, Seton M, Zahirovic S, . Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 2016, 44: 107-138.
CrossRef Google scholar
Müller R D, Zahirovic S, Williams S E, . A Global Plate Model Including Lithospheric Deformation along Major Rifts and Orogens since the Triassic. Tectonics, 2019, 38(6): 1884-1907.
CrossRef Google scholar
Panning M P, Lekić V, Romanowicz B A. Importance of Crustal Corrections in the Development of a New Global Model of Radial Anisotropy. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12325
CrossRef Google scholar
Ran B, Wang C S, Zhao X X, . New Paleomagnetic Results of the Early Permian in the Xainza Area, Tibetan Plateau and Their Paleogeographical Implications. Gondwana Research, 2012, 22 2 447-460.
CrossRef Google scholar
Ritsema J, Deuss A, van Heijst H J, . S40RTS: A Degree-40 Shear-Velocity Model for the Mantle from New Rayleigh Wave Dispersion, Teleseismic Travel-Time and Normal-Mode Splitting Function Measurements. Geophysical Journal International, 2011, 184(3): 1223-1236.
CrossRef Google scholar
Ritsema J, van Heijst H J, Woodhouse J H. Complex Shear Wave Velocity Structure Imaged beneath Africa and Iceland. Science, 1999, 286(5446): 1925-1928.
CrossRef Google scholar
Saki A. Proto-Tethyan Remnants in Northwest Iran: Geochemistry of the Gneisses and Metapelitic Rocks. Gondwana Research, 2010, 17(4): 704-714.
CrossRef Google scholar
Schellart W P, Freeman J, Stegman D R, . Evolution and Diversity of Subduction Zones Controlled by Slab Width. Nature, 2007, 446(7133): 308-311.
CrossRef Google scholar
Senemari S. Lithostratigraphy and Biostratigraphy Based on Calcareous Nannofossils at the Late Campanian to Thanetian Transition in the Izeh Zone, Southwestern Iran (Eastern Neo-Tethys). Journal of Earth Science, 2022, 33(4): 1017-1030.
CrossRef Google scholar
Şengör A M C. Mid-Mesozoic Closure of Permo-Triassic Tethys and Its Implications. Nature, 1979, 279(5714): 590-593.
CrossRef Google scholar
Şengör A M C. Plate Tectonics and Orogenic Research after 25 Years: A Tethyan Perspective. Earth-Science Reviews, 1990, 27(1/2): 1-201
Shephard G E, Matthews K J, Hosseini K, . On the Consistency of Seismically Imaged Lower Mantle Slabs. Scientific Reports, 2017, 7: 10976
CrossRef Google scholar
Simmons N A, Forte A M, Boschi L, . GyPSuM: A Joint Tomographic Model of Mantle Density and Seismic Wave Speeds. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12310
CrossRef Google scholar
Simmons N A, Forte A M, Grand S P. Joint Seismic, Geodynamic and Mineral Physical Constraints on Three-Dimensional Mantle Heterogeneity: Implications for the Relative Importance of Thermal Versus Compositional Heterogeneity. Geophysical Journal International, 2009, 177 3 1284-1304.
CrossRef Google scholar
Simmons N A, Myers S C, Johannesson G, . Evidence for Long-Lived Subduction of an Ancient Tectonic Plate beneath the Southern Indian Ocean. Geophysical Research Letters, 2015, 42(21): 9270-9278.
CrossRef Google scholar
Stampfli G M, Borel G D. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 2002, 196(1/2): 17-33.
CrossRef Google scholar
Stampfli G M, Hochard C, Vérard C, . The Formation of Pangea. Tectonophysics, 2013, 593 1-19.
CrossRef Google scholar
Stegman D R, Farrington R, Capitanio F A, . A Regime Diagram for Subduction Styles from 3-D Numerical Models of Free Subduction. Tectonophysics, 2010, 483(1/2): 29-45.
CrossRef Google scholar
Stöcklin J. Structural History and Tectonics of Iran: A Review. AAPG Bulletin, 1968, 52: 1229-1258.
Taylor W, Jaques A, Ridd M. Nitrogen-Defect Aggregation Characteristics of Some Australasian Diamonds: Time-Temperature Constraints on the Source Regions of Pipe and Alluvial Diamonds. American Mineralogist, 1990, 75: 1290-1310.
Tesoniero A, Auer L, Boschi L, . Hydration of Marginal Basins and Compositional Variations within the Continental Lithospheric Mantle Inferred from a New Global Model of Shear and Compressional Velocity. Journal of Geophysical Research: Solid Earth, 2015, 120(11): 7789-7813.
CrossRef Google scholar
Toksöz M N, Minear J W, Julian B R. Temperature Field and Geophysical Effects of a Downgoing Slab. Journal of Geophysical Research, 1971, 76(5): 1113-1138.
CrossRef Google scholar
Toksöz M N, Sleep N H, Smith A T. Evolution of the Downgoing Lithosphere and the Mechanisms of Deep Focus Earthquakes. Geophysical Journal International, 1973, 35(1/2/3): 285-310
Torsvik T H, Cocks L R M. Gondwana from Top to Base in Space and Time. Gondwana Research, 2013, 24(3/4): 999-1030.
CrossRef Google scholar
Turcotte D L, Schubert G. Geodynamics, 2014 3rd Edition Cambridge: Cambridge University Press
CrossRef Google scholar
van der Meer D G, van Hinsbergen D J J, Spakman W. Atlas of the Underworld: Slab Remnants in the Mantle, Their Sinking History, and a New Outlook on Lower Mantle Viscosity. Tectonophysics, 2018, 723: 309-448.
CrossRef Google scholar
van der Voo R, Spakman W, Bijwaard H. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 1999, 171(1): 7-20.
CrossRef Google scholar
Wan B, Wu F Y, Chen L, . Cyclical One-Way Continental Rupture-Drift in the Tethyan Evolution: Subduction-Driven Plate Tectonics. Science China Earth Sciences, 2019, 62(12): 2005-2016.
CrossRef Google scholar
Wang H L, Wang Y Y, Gurnis M, . A Long-Lived Indian Ocean Slab: Deep Dip Reversal Induced by the African LLSVP. Earth and Planetary Science Letters, 2018, 497: 1-11.
CrossRef Google scholar
White L T, Graham I, Tanner D, . The Provenance of Borneo’s Enigmatic Alluvial Diamonds: A Case Study from Cempaka, SE Kalimantan. Gondwana Research, 2016, 38: 251-272.
CrossRef Google scholar
Wu F Y, Wan B, Zhao L, . Tethyan Dynamics. Acta Petrologica Sinica, 2020, 36: 1627-1674. in Chinese with English Abstract)
CrossRef Google scholar
Yanagisawa T, Yamagishi Y, Hamano Y, . Mechanism for Generating Stagnant Slabs in 3-D Spherical Mantle Convection Models at Earth-Like Conditions. Physics of the Earth and Planetary Interiors, 2010, 183(1/2): 341-352.
CrossRef Google scholar
Yoshida M. Trench Dynamics: Effects of Dynamically Migrating Trench on Subducting Slab Morphology and Characteristics of Subduction Zones Systems. Physics of the Earth and Planetary Interiors, 2017, 268: 35-53.
CrossRef Google scholar
Young A, Flament N, Maloney K, . Global Kinematics of Tectonic Plates and Subduction Zones since the Late Paleozoic Era. Geoscience Frontiers, 2019, 10(3): 989-1013.
CrossRef Google scholar
Zahirovic S, . Scarselli N, Adam J, Chiarella D, . Resolving Geological Enigmas Using Plate Tectonic Reconstructions and Mantle Flow Models. Regional Geology and Tectonics: Principles of Geologic Analysis, 2020, Amsterdam: Elsevier, 93-111.
CrossRef Google scholar
Zahirovic, S., Gurnis, M., Wang, H. L., et al., 2019. Permian to Present Tectonic and Geodynamic Evolution of the Eastern Tethys. In Proceedings of AGU Fall Meeting, San Francisco, CA. T51E-0327
Zahirovic S, Matthews K J, Flament N, . Tectonic Evolution and Deep Mantle Structure of the Eastern Tethys since the Latest Jurassic. Earth-Science Reviews, 2016, 162: 293-337.
CrossRef Google scholar
Zhang N, Zhong S J, Leng W, . A Model for the Evolution of the Earth’s Mantle Structure since the Early Paleozoic. Journal of Geophysical Research Atmospheres, 2010, 115(B6): 006896
CrossRef Google scholar
Zhong S J, Zhang N, Li Z X, . Supercontinent Cycles, True Polar Wander, and Very Long-Wavelength Mantle Convection. Earth and Planetary Science Letters, 2007, 261 3/4 551-564.
CrossRef Google scholar
Zhou Y N, Cheng X, Wu Y Y, . The Northern Qiangtang Block Rapid Drift during the Triassic Period: Paleomagnetic Evidence. Geoscience Frontiers, 2019, 10(6): 2313-2327.
CrossRef Google scholar
Zhou Y N, Cheng X, Yu L, . Paleomagnetic Study on the Triassic Rocks from the Lhasa Terrane, Tibet, and Its Paleogeographic Implications. Journal of Asian Earth Sciences, 2016, 121: 108-119.
CrossRef Google scholar
Zhu D C, Zhao Z D, Niu Y L, . The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
CrossRef Google scholar
Zhu D C, Zhao Z D, Niu Y L, . The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 2013, 23(4): 1429-1454.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/