Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China
Liang Wang , Shouting Zhang , Yi Fang , Li Tang
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (2) : 370 -389.
Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China
The demand for fluorite resource is increasing rapidly as most fluorite deposits on Earth’s surface have been exhausted. The newly discovered fluorite deposits in Inner Mongolia are hosted by Permian metamorphosed sandy slate, intermediate-acid intrusive rocks and Cretaceous volcanic sedimentary rocks. The ore bodies are strictly controlled by faults and buried by cover rocks. The feasibility and effectiveness of multi-techniques for prospecting concealed fluorite ore bodies are evaluated, and 10 anomalies are delineated. On the basis of geological features and effectiveness of different methods, the optimum combinations of ore prospecting techniques are proposed for the exploration of zonal type and burial type concealed fluorite ore bodies. Based on comprehensive researches, an integrated exploration model is proposed: (i) select key prospecting targets based on geological backgrounds, regional geochemical anomalies of F and Ca, and remote sensing images; (ii) identify the spatial distribution of low resistivity anomaly and ore-controlling structure from geophysical survey; (iii) evaluate the mineralization potential in fault zone based on F and Ca anomalies in key sections selected from low resistivity anomaly zones; and (iv) evaluate the mineralization potential and reveal the spatial distribution of fluorite ore bodies and ore-controlling faults based on integrated geophysical and geochemical anomalies. The integrated exploration model is verified to be a powerful tool for prospecting concealed fluorite ore bodies in coverage area.
prospecting technique / concealed fluorite deposit / integrated exploration model / Shuitou fluorite belt / Inner Mongolia / North China
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Chifeng Natural Resources Bureau Annals of Chifeng City Minerals, 2019, Beijing: Science Press, 233-258. (in Chinese) |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Meng, Y. S., Zhang, R. Z., Liu, R. D., et al., 2017. Application of Multiple Geophysical Methods to Prospect Concealed Ores Beneath Quaternary Cover: A Case Study from a Copper-Polymetallic Deposit. Technology and Application of Environmental and Engineering Geophysics, 243–249. https://doi.org/10.1007/978-981-10-3244-8_28 |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
Zhang, Y. S., Wang, L., Gao, Y. Z., 2020. Geological Characteristics, Types and Utilization Value of Shuitou Fluorite Deposit in Linxi County, Inner Mongolia. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20200805.1340.004.html (in Chinese with English Abstract) |
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
/
| 〈 |
|
〉 |