Double-Frequency Microseisms on the Thick Unconsolidated Sediments in Eastern and Southeastern Coasts of United States: Sources and Applications on Seismic Site Effect Evaluation
Zhen Guo , Yu Huang , Adnan Aydin
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (5) : 1190 -1201.
Double-Frequency Microseisms on the Thick Unconsolidated Sediments in Eastern and Southeastern Coasts of United States: Sources and Applications on Seismic Site Effect Evaluation
This study presents a systematic analysis of double-frequency (DF) microseisms recorded on the unconsolidated sediments in the eastern and southeastern coasts of United States. For all recordings, the site effect parameters (predominant frequency (f 0), amplification factor and unconsolidated sediment thickness (UST)) are obtained by Nakamura method and the DF spectra are classified into five groups in terms of the DF peak patterns and the recording locations relative to the coastline. The frequencies and energy levels of the DF peaks in horizontal direction and the amplification factors are associated with the UST which is resulted from seismic site effect. By polarization analysis, the primary vibration directions of the DF peaks are identified and presented as great circles passing through the recording stations intersecting mainly along the continental slope. Correlation analyses of time histories of the DF energy and the ocean wave climate observed at buoys show that the low (<0.2 Hz) and high (>0.2 Hz) frequency DF microseisms are generated in the deep ocean and the continental shelf respectively. It is concluded that the continental slope plays a significant role in the generation of DF microseisms as it causes reflection of waves from the open ocean, initiating standing waves.
seismic site effect / double-frequency microseisms / unconsolidated sediments / continental slope / ocean wave
| [1] |
|
| [2] |
|
| [3] |
Bard, P.-Y., 1999. Microtremor Measurements: A Tool for Site Effect Estimation? Proc. 2nd Int. Symp. on the Effects of Surface Geology on Seismic Motion, Yokohama |
| [4] |
Bard, P.-Y., SESAME-Team, 2005. Guideline for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations-Measurements, Processing and Interpretations. SESAME European Research Project EVG1-CT-2000-00026, D23.12 |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Sautter, L. R., 2004. A Profile of the Southeast U.S. Continental Margin. Estuary to the Abyss, Explorations, National Oceanic and Atmospheric Administration (NOAA), http://oceanexplorer.noaa.gov/explora-tions/04etta/background/profile/profile.html |
| [32] |
|
| [33] |
Schwab, W. C., Gayes, P. T., Morton, R. A., et al., 2009. Coastal Change along the Shore of Northeastern South Carolina: The South Carolina Coastal Erosion Study, U.S. Geological Survey Open-File Report 2008-1206. http://pubs.usgs.gov/of/2008/1206/ |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
/
| 〈 |
|
〉 |