PDF
Abstract
Ultrahigh-pressure metamorphism has recently been reported from various crustal rocks in the Seve Nappe Complex (SNC) in which microdiamonds were found. However, in gneiss from the Lower Seve Nappe (LSN), neither any direct petrographic indication for UHP was reported nor the metamorphic evolution was well constrained. We studied a mylonitic gneiss from the Handöl area of the LSN and applied phase-diagram modeling and Ti-in-biotite thermometry. Based on the compositions of garnet and biotite and observed mineral assemblages, a path was reconstructed passing through about 8 kbar and 730 °C at prograde metamorphism. Peak-pressure and initial retrograde stages occurred at 9.0–10.2 kbar at 745–775 °C, and 7–9 kbar at <750 °C, respectively. No ultrahigh-pressure evidence was recognized compatible with medium-pressure metamorphism deduced in earlier studies of gneiss from the SNC. As higher peak pressures were reported recently for metamorphic rocks of the LSN, a possible interpretation is that slices or erased blocks were subducted, metamorphosed at different depths, and exhumed in a subduction channel. However, the dominant gneiss of the SNC experienced only a medium-pressure metamorphism in the upper part of the downgoing Baltica Plate. Rocks from different depth levels were brought together in an exhumation channel located between Baltica and the overlying plate.
Keywords
Lower Seve Nappe
/
Swedish Caledonides
/
mylonitic gneiss
/
P-T pseudosection modeling
/
Ti-in-biotite thermometry
/
metamorphic rocks
Cite this article
Download citation ▾
Botao Li, Hans-Joachim Massonne, Xiaoping Yuan.
Pressure-Temperature Evolution of a Mylonitic Gneiss from the Lower Seve Nappe in the Handöl Area, Central Sweden.
Journal of Earth Science, 2021, 32(6): 1496-1511 DOI:10.1007/s12583-021-1413-3
| [1] |
Andersen T B, Jamtveit B. Uplift of Deep Crust during Orogenic Extensional Collapse: A Model Based on Field Studies in the Sogn-Sunnfjord Region of Western Norway. Tectonics, 1990, 9(5): 1097-1111.
|
| [2] |
Andréasson P G. The Baltoscandian Margin in Neoproterozoic-Early Palaeozoic Times: Some Constraints on Terrane Derivation and Accretion in the Arctic Scandinavian Caledonides. Tectonophysics, 1994, 231(1–3): 1-32.
|
| [3] |
Andréasson P G, Gorbatschev R. Metamorphism in Extensive Nappe Terrains: A Study of the Central Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 1980, 102(4): 335-357.
|
| [4] |
Andréasson P G, Svenningsen O M, Albrecht L. Dawn of Phanerozoic Orogeny in the North Atlantic Tract; Evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 1998, 120(2): 159-172
|
| [5] |
Arnbom J O. Metamorphism of the Seve Nappes at Åreskutan, Swedish Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 1980, 102(4): 359-371.
|
| [6] |
Barnes C, Majka J, Schneider D, . High-Spatial Resolution Dating of Monazite and Zircon Reveals the Timing of Subduction-Exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides). Contributions to Mineralogy and Petrology, 2019, 174(1): 1-18.
|
| [7] |
Bender H, Ring U, Almqvist B S G, . Metamorphic Zonation by Out-of-Sequence Thrusting at Back-Stepping Subduction Zones: Sequential Accretion of the Caledonian Internides, Central Sweden. Tectonics, 2018, 37(10): 3545-3576.
|
| [8] |
Benisek A, Dachs E, Kroll H. A Ternary Feldspar-Mixing Model Based on Calorimetric Data: Development and Application. Contributions to Mineralogy and Petrology, 2010, 160(3): 327-337.
|
| [9] |
Bergman S. P-T Paths in the Handöl Area, Central Scandinavia: Record of Caledonian Accretion of Outboard Rocks to the Baltoscandian Margin. Journal of Metamorphic Geology, 1992, 10(2): 265-281.
|
| [10] |
Brandelik A. CALCMIN—An EXCEL™ Visual Basic Application for Calculating Mineral Structural Formulae from Electron Microprobe Analyses. Computers & Geosciences, 2009, 35(7): 1540-1551.
|
| [11] |
Brown M. Crustal Melting and Melt Extraction, Ascent and Emplacement in Orogens: Mechanisms and Consequences. Journal of the Geological Society, 2007, 164(4): 709-730.
|
| [12] |
Brueckner H K, van Roermund H L M. Dunk Tectonics: A Multiple Subduction/Eduction Model for the Evolution of the Scandinavian Caledonides. Tectonics, 2004, 23(2): 1-20.
|
| [13] |
Brueckner H K, van Roermund H L M. Concurrent HP Metamorphism on both Margins of Iapetus: Ordovician Ages for Eclogites and Garnet Pyroxenites from the Seve Nappe Complex, Swedish Caledonides. Journal of the Geological Society, 2007, 164(1): 117-128.
|
| [14] |
Bukala M, Klonowska I, Barnes C, . UHP Metamorphism Recorded by Phengite Eclogite from the Caledonides of Northern Sweden: P-T Path and Tectonic Implications. Journal of Metamorphic Geology, 2018, 36(5): 547-566.
|
| [15] |
Butler J P, Jamieson R A, Steenkamp H M, . Discovery of Coesite-Eclogite from the Nordøyane UHP Domain, Western Gneiss Region, Norway: Field Relations, Metamorphic History, and Tectonic Significance. Journal of Metamorphic Geology, 2013, 31(2): 147-163.
|
| [16] |
Carswell D A, Tucker R D, O’Brien P J, . Coesite Micro-Inclusions and the U/Pb Age of Zircons from the Hareidland Eclogite in the Western Gneiss Region of Norway. Lithos, 2003, 67(3/4): 181-190.
|
| [17] |
Chen S, Li X P, Kong F M, . Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 2018, 29(5): 1219-1235.
|
| [18] |
Connolly J A D. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 2005, 236(1/2): 524-541.
|
| [19] |
Corfu F, Gasser D, Chew D M. New Perspectives on the Caledonides of Scandinavia and Related Areas: Introduction. Geological Society, London, Special Publications, 2014, 390(1): 1-8.
|
| [20] |
Cuthbert S J, Carswell D A, Krogh-Ravna E J, . Eclogites and Eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos, 2000, 52(1–4): 165-195.
|
| [21] |
Davies J H, von Blanckenburg F. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 1995, 129(1–4): 85-102.
|
| [22] |
Day H W. A Revised Diamond-Graphite Transition Curve. American Mineralogist, 2012, 97(1): 52-62.
|
| [23] |
Dobrzhinetskaya L F, Eide E A, Larsen R B, . Microdiamond in High-Grade Metamorphic Rocks of the Western Gneiss Region, Norway. Geology, 1995, 23(7): 597-600.
|
| [24] |
Faryad S W. High-Pressure Polymetamorphic Garnet Growth in Eclogites from the Mariánské Lázne Complex (Bohemian Massif). European Journal of Mineralogy, 2012, 24(3): 483-497.
|
| [25] |
Faryad S W, Cuthbert S J. High-Temperature Overprint in (U)HPM Rocks Exhumed from Subduction Zones: A Product of Isothermal Decompression or a Consequence of Slab Break-off (Slab Rollback)?. Earth-Science Reviews, 2020, 202: 103108
|
| [26] |
Fassmer K, Klonowska I ^, Walczak K, . Middle Ordovician Subduction of Continental Crust in the Scandinavian Caledonides: An Example from Tjeliken, Seve Nappe Complex, Sweden. Contributions to Mineralogy and Petrology, 2017, 172(11/12): 1-21
|
| [27] |
Fossen H. Extensional Tectonics in the Caledonides: Synorogenic or Postorogenic?. Tectonics, 2000, 19(2): 213-224.
|
| [28] |
Garfunkel Z, Greiling R O. A Thin Orogenic Wedge upon Thick Foreland Lithosphere and the Missing Foreland Basin. Geologische Rundschau, 1998, 87(3): 314-325.
|
| [29] |
Gee D G. Chapter 23 Swedish Caledonides: Key Components of an Early-Middle Paleozoic Himalaya-Type Collisional Orogen. Geological Society, London, Memoirs, 2020, 50(1): 577-599.
|
| [30] |
Gee D G, Janák M, Majka J, . Subduction along and within the Baltoscandian Margin during Closing of the Iapetus Ocean and Baltica-Laurentia Collision. Lithosphere, 2013, 5(2): 169-178.
|
| [31] |
Gee D G, Juhlin C, Pascal C, . Collisional Orogeny in the Scandinavian Caledonides (COSC). GFF, 2010, 132(1): 29-44.
|
| [32] |
Gee D G, Kumpulainen R, Roberts D, . Gee D G, Sturt B A, . Scandinavian Caledonides, Tectonostratigraphic Map, Scale 1: 2 000 000. The Caledonide Orogen-Scandinavia and Related Areas, 1985, Chichester: Wiley
|
| [33] |
Giuntoli F, Menegon L, Warren C J. Replacement Reactions and Deformation by Dissolution and Precipitation Processes in Amphibolites. Journal of Metamorphic Geology, 2018, 36(9): 1263-1286.
|
| [34] |
Griffin W L, Brueckner H K. Caledonian Sm-Nd Ages and a Crustal Origin for Norwegian Eclogites. Nature, 1980, 285(5763): 319-321.
|
| [35] |
Grimmer J C, Glodny J, Drüppel K, . Early- to Mid-Silurian Extrusion Wedge Tectonics in the Central Scandinavian Caledonides. Geology, 2015, 43(4): 347-350.
|
| [36] |
Gromet L P, Sjöström H, Bergman S, . Contrasting Ages of Metamorphism in the Seve Nappes: U-Pb Results from the Central and Northern Swedish Caledonides. GFF, 1996, 118(Suppl.4): 36-37.
|
| [37] |
Hacker B R, Gans P B. Continental Collisions and the Creation of Ultrahigh-Pressure Terranes: Petrology and Thermochronology of Nappes in the Central Scandinavian Caledonides. Geological Society of America Bulletin, 2005, 117(1): 117-134.
|
| [38] |
Holland T J B, Powell R. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 2011, 29(3): 333-383.
|
| [39] |
Holland T, Baker J, Powell R. Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeOAl2O3-SiO2-H2O. European Journal of Mineralogy, 1998, 10(3): 395-406.
|
| [40] |
Holland T, Powell R. Thermodynamics of Order-Disorder in Minerals: II, Symmetric Formalism Applied to Solid Solutions. American Mineralogist, 1996, 81(11/12): 1425-1437.
|
| [41] |
Holness M B, Cesare B, Sawyer E W. Melted Rocks under the Microscope: Microstructures and Their Interpretation. Elements, 2011, 7(4): 247-252.
|
| [42] |
Janák M, van Roermund H, Majka J, . UHP Metamorphism Recorded by Kyanite-Bearing Eclogite in the Seve Nappe Complex of Northern Jämtland, Swedish Caledonides. Gondwana Research, 2013, 23(3): 865-879.
|
| [43] |
Klonowska I, Janák M, Majka J, . Eclogite and Garnet Pyroxenite from Stor Jougdan, Seve Nappe Complex, Sweden: Implications for UHP Metamorphism of Allochthons in the Scandinavian Caledonides. Journal of Metamorphic Geology, 2016, 34(2): 103-119.
|
| [44] |
Klonowska I, Janák M, Majka J, . Microdiamond on Åreskutan Confirms Regional UHP Metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. Journal of Metamorphic Geology, 2017, 35(5): 541-564.
|
| [45] |
Klonowska I, Majka J, Janák M, . Pressure-Temperature Evolution of a Kyanite-Garnet Pelitic Gneiss from Åreskutan: Evidence of Ultra-High-Pressure Metamorphism of the Seve Nappe Complex, West-Central Jämtland, Swedish Caledonides. Geological Society, London, Special Publications, 2014, 390(1): 321-336.
|
| [46] |
Kretz R. Symbols for Rock Forming Minerals. American Mineralogist, 1983, 68(1/2): 277-279
|
| [47] |
Kriegsman L M, Álvarez-Valero A M. Melt-Producing versus Melt-Consuming Reactions in Pelitic Xenoliths and Migmatites. Lithos, 2010, 116(3/4): 310-320.
|
| [48] |
Kylander-Clark A R C, Hacker B R, Mattinson J M. Slow Exhumation of UHP Terranes: Titanite and Rutile Ages of the Western Gneiss Region, Norway. Earth and Planetary Science Letters, 2008, 272(3/4): 531-540.
|
| [49] |
Li B T, Massonne H-J. Early Variscan P-T Evolution of an Eclogite Body and Adjacent Orthogneiss from the Northern Malpica-Tuy Shear-Zone in NW Spain. European Journal of Mineralogy, 2016, 28(6): 1131-1154.
|
| [50] |
Li B T, Massonne H-J, Koller F, . Metapelite from the High- to Ultrahigh-Pressure Terrane of the Eastern Alps (Pohorje Mountains, Slovenia)—New Pressure, Temperature and Time Constraints on a Polymetamorphic Rock. Journal of Metamorphic Geology, 2021
|
| [51] |
Li B T, Massonne H-J, Opitz J. Clockwise and Anticlockwise P-T Paths of High-Pressure Rocks from the ‘La Pioza’ Eclogite Body of the Malpica-Tuy Complex, NW Spain. Journal of Petrology, 2017, 58(7): 1363-1392.
|
| [52] |
Li B T, Massonne H-J, Zhang J F. Evolution of a Gneiss in the Seve Nappe Complex of Central Sweden-Hints at an Early Caledonian, Medium-Pressure Metamorphism. Lithos, 2020, 376/377 105746
|
| [53] |
Li Z Y, Li Y L, Zhao L M, . Petrology and Metamorphic P-T Paths of Metamorphic Zones in the Huangyuan Group, Central Qilian Block, NW China. Journal of Earth Science, 2019, 30(6): 1280-1292.
|
| [54] |
Litjens A. PT Estimates of High-Pressure Metamorphic Rocks from the Seve Nappe Complex, Jämtland, Central Scandinavian Caledonides, 2002, The Netherlands: University of Utrecht
|
| [55] |
Liu P L, Massonne H-J. An Anticlockwise P-T Path at High-Pressure, High-Temperature Conditions for a Migmatitic Gneiss from the Island of Fjørtoft, Western Gneiss Region, Norway, Indicates Two Burial Events during the Caledonian Orogeny. Journal of Metamorphic Geology, 2019, 37(4): 567-588.
|
| [56] |
Majka J, Be’eri-Shlevin Y, Gee D G, . Multiple Monazite Growth in the Åreskutan Migmatite: Evidence for a Polymetamorphic Late Ordovician to Late Silurian Evolution in the Seve Nappe Complex of West-Central Jämtland, Sweden. Journal of Geosciences, 2012, 57(1): 3-23.
|
| [57] |
Majka J, Janák M, Andersson B, . Pressure-Temperature Estimates on the Tjeliken Eclogite: New Insights into the (Ultra)-High-Pressure Evolution of the Seve Nappe Complex in the Scandinavian Caledonides. Geological Society, London, Special Publications, 2014, 390(1): 369-384.
|
| [58] |
Majka J, Rosén, Janák M, . Microdiamond Discovered in the Seve Nappe (Scandinavian Caledonides) and Its Exhumation by the “Vacuum-Cleaner” Mechanism. Geology, 2014, 42(12): 1107-1110.
|
| [59] |
Massonne H-J. Phase Relations and Dehydration Behaviour of Calcareous Sediments at Very-Low to Low Grade Metamorphic Conditions. Periodico di Mineralogia, 2010, 79(2): 21-43
|
| [60] |
Massonne H-J. Formation of Amphibole and Clinozoisite-Epidote in Eclogite Owing to Fluid Infiltration during Exhumation in a Subduction Channel. Journal of Petrology, 2012, 53(10): 1969-1998.
|
| [61] |
Massonne H-J. Hydration of the Lithospheric Mantle by the Descending Plate in a Continent-Continent Collisional Setting and Its Geodynamic Consequences. Journal of Geodynamics, 2016, 96 50-61.
|
| [62] |
Massonne H-J. Key Patterns of S-Type Granitic Gneiss to Define the Baric (Low- to High-Pressure) Nature of Phanerozoic Basement Terranes. Terra Nova, 2021, 33(3): 225-239.
|
| [63] |
Massonne H-J, Cruciani G, Franceschelli M, . Anti-clockwise Pressure-Temperature Paths Record Variscan Upper-Plate Exhumation: Example from Micaschists of the Porto Vecchio Region, Corsica. Journal of Metamorphic Geology, 2018, 36(1): 55-77.
|
| [64] |
Massonne H-J, Li B T. Zoning of Eclogitic Garnet Cores—A Key Pattern Demonstrating the Dominance of Tectonic Erosion as Part of the Burial Process of Worldwide Occurring Eclogites. Earth-Science Reviews, 2020, 210: 103356
|
| [65] |
Nicholson R. An Eclogite from the Caledonides of Southern Norrbotten. Norsk Geologisk Tidsskrift, 1984, 64 165-169.
|
| [66] |
Petrík I, Janák M, Klonowska I, . Monazite Behaviour during Metamorphic Evolution of a Diamond-Bearing Gneiss: A Case Study from the Seve Nappe Complex, Scandinavian Caledonides. Journal of Petrology, 2019, 60(9): 1773-1796
|
| [67] |
Powell R, Holland T. Relating Formulations of the Thermodynamics of Mineral Solid Solutions: Activity Modeling of Pyroxenes, Amphiboles, and Micas. American Mineralogist, 1999, 84(1/2): 1-14.
|
| [68] |
Rahimi G, Massonne H-J. Metamorphic Evolution of Chloritoid-Bearing Micaschist from the Variscan Elstergebirge: Evidences for Stacking of High-Pressure Rocks in the Saxothuringian Zone of Central Europe. Journal of Earth Science, 2020, 31(3): 425-446.
|
| [69] |
Roberts D. The Scandinavian Caledonides: Event Chronology, Palaeogeographic Settings and Likely Modern Analogues. Tectonophysics, 2003, 365(1–4): 283-299.
|
| [70] |
Rosenberg C L, Handy M R. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 2005, 23(1): 19-28.
|
| [71] |
Santallier D S. Mineralogy and Crystallization of the Seve Eclogites in the Vuoggatjålme Area, Swedish Caledonides of Norrbotten. Geologiska Föreningen i Stockholm Förhandlingar, 1988, 110(2): 89-98.
|
| [72] |
Sjöström H. The Seve-Köli Nappe Complex of the Handöl-Storlien-Essandsjøen Area, Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 1983, 105(2): 93-117.
|
| [73] |
Smith D C. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics. Nature, 1984, 310(5979): 641-644.
|
| [74] |
Spear F S. Garnet Growth after Overstepping. Chemical Geology, 2017, 466: 491-499.
|
| [75] |
Stephens M B, Gee D G. Gee D G, Sturt B A. A Plate Tectonic Model for the Evolution of the Eugeoclinal Terranes in the Central Scandinavian Caledonides. The Caledonide Orogen-Scandinavia and Related Areas, 1985, Chichester: Wiley, 953-978
|
| [76] |
Sun G M, Li X P, Duan W L, . Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 2018, 29(5): 1026-1039.
|
| [77] |
Terry M P, Robinson P, Krogh R E J. Kyanite Eclogite Thermobarometry and Evidence for Thrusting of UHP over HP Metamorphic Rocks, Nordøyane, Western Gneiss Region, Norway. American Mineralogist, 2000, 85(11/12): 1637-1650.
|
| [78] |
Tomkins H S, Powell R, Ellis D J. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 2007, 25(6): 703-713.
|
| [79] |
Törnebohm A E. Om Fjällproblemet. Geologiska Föreningen i Stockholm Förhandlingar, 1888, 105: 328-336.
|
| [80] |
van Roermund H. High-Pressure Ultramafic Rocks from the Allochthonous Nappes of the Swedish Caledonides. The Caledonide Geology of Scandinavia, 1989, Dordrecht: Springer Netherlands, 205-219
|
| [81] |
van Roermund H. Gee D G, Sturt B A. Eclogites of the Seve Nappe, Central Scandinavian Caledonides. The Caledonide Orogen-Scandinavia and Related Areas, 1985, Chichester: Wiley, 873-886
|
| [82] |
van Roermund H, Bakker E. Structure and Metamorphism of the Tången-Inviken Area, Seve Nappes, Central Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 1983, 105(4): 301-319.
|
| [83] |
Wain A. New Evidence for Coesite in Eclogite and Gneisses: Defining an Ultrahigh-Pressure Province in the Western Gneiss Region of Norway. Geology, 1997, 25(10): 927-930.
|
| [84] |
Wain A, Waters D, Jephcoat A, . The High-Pressure to Ultrahigh-Pressure Eclogite Transition in the Western Gneiss Region, Norway. European Journal of Mineralogy, 2000, 12(3): 667-687.
|
| [85] |
Waizenhöfer F, Massonne H-J. Monazite in a Variscan Mylonitic Paragneiss from the Münchberg Metamorphic Complex (NE Bavaria) Records Cadomian Protolith Ages. Journal of Metamorphic Geology, 2017, 35(4): 453-469.
|
| [86] |
Wei C J, Powell R, Zhang L F. Eclogites from the South Tianshan, NW China: Petrological Characteristic and Calculated Mineral Equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O System. Journal of Metamorphic Geology, 2003, 21(2): 163-179.
|
| [87] |
White R W, Powell R, Holland T J B. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 2001, 19(2): 139-153.
|
| [88] |
White R W, Powell R, Holland T J B. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 2007, 25(5): 511-527.
|
| [89] |
Wu C M, Chen H X. Revised Ti-in-Biotite Geothermometer for Ilmenite- or Rutile-Bearing Crustal Metapelites. Science Bulletin, 2015, 60(1): 116-121.
|
| [90] |
Xiang H, Zhang Z M, Zhao L M, . Metamorphic P-T-t Path of UHT Granulites from the North Tongbai Orogen, Central China. Journal of Earth Science, 2018, 29(5): 1116-1131.
|
| [91] |
Yin C, Zhao G, Sun M. High-Pressure Pelitic Granulites from the Helanshan Complex in the Khondalite Belt, North China Craton: Metamorphic P-t Path and Tectonic Implications. American Journal of Science, 2015, 315(9): 846-879.
|
| [92] |
Zeh A, Holland T J B, Klemd R. Phase Relationships in Grunerite-Garnet-Bearing Amphibolites in the System CFMASH, with Applications to Metamorphic Rocks from the Central Zone of the Limpopo Belt, South Africa. Journal of Metamorphic Geology, 2005, 23(1): 1-17.
|
| [93] |
Zhang Y C, Li X P, Sun G M, . Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 2019, 30(3): 549-562.
|
| [94] |
Zhou G S, Zhang J X, Li Y S, . Metamorphic Evolution and Tectonic Implications of the Granulitized Eclogites from the Luliangshan Terrane in the North Qaidam Ultrahigh Pressure Metamorphic Belt, NW China: New Constraints from Phase Equilibrium Modeling. Journal of Earth Science, 2019, 30(3): 585-602.
|