Aspects of Regional and Worldwide Mineral Resource Prediction

Frits Agterberg

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (2) : 279 -287.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (2) : 279 -287. DOI: 10.1007/s12583-020-1397-4
Special Issue on Digital Geosciences and Quantitative Exploration of Mineral Resources

Aspects of Regional and Worldwide Mineral Resource Prediction

Author information +
History +
PDF

Abstract

The purpose of this contribution is to highlight four topics of regional and worldwide mineral resource prediction: (1) use of the jackknife for bias elimination in regional mineral potential assessments; (2) estimating total amounts of metal from mineral potential maps; (3) fractal/multifractal modeling of mineral deposit density data in permissive areas; and (4) worldwide and large-areas metal size-frequency distribution modeling. The techniques described in this paper remain tentative because they have not been widely researched and applied in mineral potential studies. Although most of the content of this paper has previously been published, several perspectives for further research are suggested.

Keywords

Mineral resource prediction / jackknife method / multifractals / worldwide and regional metal size-frequency distributions

Cite this article

Download citation ▾
Frits Agterberg. Aspects of Regional and Worldwide Mineral Resource Prediction. Journal of Earth Science, 2021, 32(2): 279-287 DOI:10.1007/s12583-020-1397-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agterberg, F. P., Chung, C. F., Fabbri, A. G., et al., 1972. Geomathematical Evaluation of Copper and Zinc Potential of the Abitibi Area, Ontario and Quebec. Geological Survey of Canada, 41–71

[2]

Agterberg, F. P., 1973. Probabilistic Models to Evaluate Regional Mineral Potential. In: Proc. Symposium on Mathematical Methods in the Geosciences, Přibram. 3–38

[3]

Agterberg F P. Fractals and Spatial Statistics of Point Patterns. Journal of Earth Science, 2013, 24(1): 1-11.

[4]

Agterberg F P. Geomathematics: Theoretical Foundations, Applications and Future Developments, 2014, Heidelberg: Springer, 553

[5]

Agterberg F P. Pareto-lognormal Modeling of Known and Unknown Metal Resources. Natural Resources Research, 2017, 26: 3-20.

[6]

Agterberg F P. Pareto-Lognormal Modeling of Known and Unknown Metal Resources. II. Method Refinement and Further Applications. Natural Resources Research, 2017, 26(3): 265-283.

[7]

Agterberg F P. Daya Sagar B S, Cheng Q M, Agterberg F P. Statistical Modeling of Regional and Worldwide Size-Frequency Distributions of Metal Deposits. Handbook of Mathematical Geosciences, 2018, Heidelberg: Springer, 505-527.

[8]

Agterberg F P. New Method of Fitting Pareto-Lognormal Size-Frequency Distributions of Metal Deposits. Natural Resources Research, 2018, 27(1): 265-283

[9]

Agterberg F P. Multifractal Modeling of Worldwide and Canadian Metal Size-Frequency Distributions. Natural Resources Research, 2020, 29(1): 539-550.

[10]

Agterberg F P, David M. Weiss A. Statistical Exploration. Computer Methods for the 80’s, 1979, New York: Society of Mining Engineers, 30-115

[11]

Agterberg F P. Can Multifractals be Used for Mineral Resource Appraisal?. Journal of Geochemical Exploration, 2018, 189: 54-63.

[12]

Agterberg F P. Merriam D F. Autocorrelation Functions in Geology. Geostatistics, 1970, New York: Plenum, 113-142.

[13]

Bonham-Carter G F. Geographic Information Systems for geoscientists: Modelling with GIS, 1994, Oxford: Pergamon, 398

[14]

Carlson C A. Spatial Distribution of Ore Deposits. Geology, 1991, 19(2): 111-114.

[15]

Cheng Q M. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 2007, 32(1/2): 314-324.

[16]

Efron B. The Jackknife, the Bootstrap and Other Resampling Plans, 1982, Philadelphia: SIAM, 93

[17]

Kleiber C, Kotz S. Statistical Distributions in Economics and Actuarial Sciences, 2003, Hoboken: Wiley, 339

[18]

Lydon, J. W., 2007. An Overview of Economic and Geological Contexts of Canada’s Major Mineral Deposit Types. In: Goodfellow, M. D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces & Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, Montreal. 3–48

[19]

Mandelbrot B B. Les Objects Fractals: Forme, Hazard et Dimension, 1975, Paris: Flammarion, 346

[20]

Patiño Douce A E. Metallic Mineral Resources in the Twenty-First Century. I. Historical Extraction Trends and Expected Demand. Natural Resources Research, 2016, 25(1): 71-90.

[21]

Patiño Douce A E. Metallic Mineral Resources in the Twenty First Century. II. Constraints on Future Supply. Natural Resources Research, 2016, 25: 97-124.

[22]

Patiño Douce A E. Statistical Distribution Laws for Metallic Mineral Deposit Sizes. Natural Resources Research, 2016, 25: 365-387.

[23]

Patiño Douce A E. Loss Distribution Model for Metal Discovery Probabilities. Natural Resources Research, 2017, 26: 241-263.

[24]

Quandt R E. Old and New Methods of Estimation and the Pareto Distribution. Metrica, 1966, 10: 55-82.

[25]

Quenouille M. Approximate Tests of Correlation in Time Series. Journal of the Royal Statistical Society, Series B, 1949, 27: 395-449.

[26]

Reed W J. The Pareto Law of Increases: An Explanation and an Extension. Physica A., 2003, 319: 579-597.

[27]

Reed W J, Jorgensen M. The Double Pareto-Lognormal Distribution. A New Parametric Model for Size Distributions. Computational Statistics: Theory and Methods, 2003, 33(8): 1733-1753

[28]

Ripley B D. The Second-Order Analysis of Stationary Point Processes. Journal of Applied Probability, 1976, 13: 255-266.

[29]

Singer D, Menzie W D. Quantitative Mineral Resource Assessments: An Integrated Approach, 2010, New York: Oxford University Press

[30]

Tukey J W. Merriam D F. Some Further Inputs. Geostatistics, 1970, New York: Plenum, 163-174.

[31]

USGS Mineral Commodity Summaries 2015, 2015, Reston: U.S. Geological Survey

[32]

Zhao P, Hu W, Li Z. Statistical Prediction of Mineral Deposits, 1983, Beijing: Geological Publishing House (in Chinese)

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/