PDF
Abstract
The widespread W-(Mo)-Sn-Nb-Ta polymetallic mineralization in Southeast (SE) China is genetically associated with Mesozoic highly fractionated granitic rocks. Such rocks have enigmatic mineralogical and geochemical features, making its petrogenesis an intensely debated topic. To better understand the underlying magma evolution processes, petrography, garnet chemistry and whole-rock major and trace element data are reported for Jurassic highly fractionated granitic rocks and associated microgranite and aplitepegmatite dikes from Macao and compared with coeval similar granitic rocks from nearby areas in SE China. Despite the fact that the most evolved rocks in Macao are garnet-bearing aplite-pegmatite dikes, the existence of coeval two-mica and garnet-bearing biotite and muscovite granites displaying more evolved compositions (e.g, lower Zr/Hf ratios) indicates that the differentiation sequence reached higher degrees of fractionation at a regional scale. Although crystal fractionation played an important role, late-stage fluid/melt interactions, involving F-rich fluids, imparted specific geochemical characteristics to Macao and SE China highly fractionated granitic rocks such as the non-CHARAC (CHArge-and-RAdius-Controlled) behavior of trace elements, leading, for example, to non-chondritic Zr/Hf ratios, Rare Earth Elements (REE) tetrad effects and Nb-Ta enrichment and fractionation. Such process contributed to the late-stage crystallization of accessory phases only found in these highly evolved facies. Among the latter, two populations of garnet were identified in MGI (Macao Group I) highly fractionated granitic rocks: small grossular-poor euhedral grains and large grossular-rich skeletal garnet grains with quartz inclusions. The first group was mainly formed through precipitation from highly evolved Mn-rich slightly peraluminous melts under low-pressure and relatively low temperature (∼700 °C) conditions. Assimilation of upper crust metasedimentary materials may have contributed as a source of Mn and Al to the formation of garnet. The second group has a metasomatic origin related to the interaction of magmatic fluids with previously crystallized mineral phases and, possibly, with assimilated metasedimentary enclaves or surrounding metasedimentary strata. The highly fractionated granitic rocks in Macao represent the first stage in the development of granite-related W-(Mo)-Sn-Nb-Ta mineralization associated with coeval more evolved lithotypes in SE China.
Keywords
highly fractionated granites
/
aplite
/
Macao (South China)
/
Jurassic
/
late-stage fluid/melt interactions
/
garnet
/
non-CHARAC
/
REE tetrad effect
Cite this article
Download citation ▾
Pedro Quelhas, João Mata, Ágata Alveirinho Dias.
Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes.
Journal of Earth Science, 2021, 32(6): 1454-1471 DOI:10.1007/s12583-020-1389-4
| [1] |
Antunes I M H R, Neiva A M R, Ramos J M F, . Petrogenetic Links between Lepidolite-Subtype Aplite-Pegmatite, Aplite Veins and Associated Granites at Segura (Central Portugal). Geochemistry, 2013, 73(3): 323-341.
|
| [2] |
Bacon C R, Druitt T H. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 1988, 98(2): 224-256.
|
| [3] |
Badanina E V, Trumbull R B, Dulski P, . The Behavior of rare-Earth and Lithophile Trace Elements in rare-Metal Granites: a Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikalia, Russia. The Canadian Mineralogist, 2006, 44(3): 667-692.
|
| [4] |
Ballouard C, Poujol M, Boulvais P, . Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 2016, 44(3): 231-234.
|
| [5] |
Bau M. The Lanthanide Tetrad Effect in Highly Evolved Felsic Igneous Rocks—A Reply to the Comment by Y. Pan. Contributions to Mineralogy and Petrology, 1997, 128(4): 409-412.
|
| [6] |
Bau M, Dulski P. Comparative Study of Yttrium and Rare-Earth Element Behaviours in Fluorine-Rich Hydrothermal Fluids. Contributions to Mineralogy and Petrology, 1995, 119(2/3): 213-223.
|
| [7] |
Bea F, Pereira M D, Stroh A. Mineral/Leucosome Trace-Element Partitioning in a Peraluminous Migmatite (a Laser Ablation-ICP-MS Study). Chemical Geology, 1994, 117(1/2/3/4): 291-312.
|
| [8] |
Bray E A. Garnet Compositions and Their Use as Indicators of Peraluminous Granitoid Petrogenesis—Southeastern Arabian Shield. Contributions to Mineralogy and Petrology, 1988, 100(2): 205-212.
|
| [9] |
Cao J Y, Yang X Y, Du J G, . Formation and Geodynamic Implication of the Early Yanshanian Granites Associated with W-Sn Mineralization in the Nanling Range, South China: An Overview. International Geology Review, 2018, 60(11): 1744-1771. 12/13/14
|
| [10] |
Carrington da Costa, J., Lemos, M.S., 1964. Fisiografia e Geologia da Província de Macau. Centro Municipal de Informação de Turismo
|
| [11] |
Chappell B W, White A J R. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1/2): 1-26.
|
| [12] |
Charvet J. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 2013, 74: 198-209.
|
| [13] |
Chen G-N, Grapes R. Granite Genesis: In Situ Melting and Crustal Evolution, 2007, Netherlands: Elsevier, 276
|
| [14] |
Clemens J D, Wall V J. Controls on the Mineralogy of S-Type Volcanic and Plutonic Rocks. Lithos, 1988, 21(1): 53-66.
|
| [15] |
Costa JCDA. Geologia da Provincia de Macau. Boletim da Sociedade Geológica de Portugal, 1944, 3: 181-222.
|
| [16] |
Dahlquist J A, Galindo C, Pankhurst R J, . Magmatic Evolution of the Peñón Rosado Granite: Petrogenesis of Garnet-Bearing Granitoids. Lithos, 2007, 95(3/4): 177-207.
|
| [17] |
Dill H G. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 2015, 69: 417-561.
|
| [18] |
Duc-Tin Q, Keppler H. Monazite and Xenotime Solubility in Granitic Melts and the Origin of the Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 2015, 169(1): 1-26.
|
| [19] |
Dziggel A, Wulff K, Kolb J, . Significance of Oscillatory and Bell-Shaped Growth Zoning in Hydrothermal Garnet: Evidence from the Navachab Gold Deposit, Namibia. Chemical Geology, 2009, 262(3/4): 262-276.
|
| [20] |
El Bouseily A M, El Sokkary A A. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 1975, 16(3): 207-219.
|
| [21] |
Erdmann S, Jamieson R A, MacDonald M A. Evaluating the Origin of Garnet, Cordierite, and Biotite in Granitic Rocks: a Case Study from the South Mountain Batholith, Nova Scotia. Journal of Petrology, 2009, 50(8): 1477-1503.
|
| [22] |
Fourcade S, Capdevila R, Ouabadi A, . The Origin and Geodynamic Significance of the Alpine Cordierite-Bearing Granitoids of Northern Algeria. A Combined Petrological, Mineralogical, Geochemical and Isotopic (O, H, Sr, Nd) Study. Lithos, 2001, 57(2/3): 187-216.
|
| [23] |
Frost B R, Frost C D. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 2008, 49(11): 1955-1969.
|
| [24] |
Gerstenberger H. Autometasomatic Rb Enrichments in Highly Evolved Granites Causing Lowered Rb Sr Isochron Intercepts. Earth and Planetary Science Letters, 1989, 93(1): 65-75.
|
| [25] |
Green T H. Garnet in Silicic Liquids and Its Possible Use as a P-T Indicator. Contributions to Mineralogy and Petrology, 1977, 65(1): 59-67.
|
| [26] |
Green TH. Experimental Phase Equilibrium Studies of Garnet-Bearing I-Type Volcanics and High-Level Intrusives from Northland, New Zealand. Geological Society of America Special Papers. Geological Society of America, 1992, 272: 429-438.
|
| [27] |
Guo C L, Chen Y C, Zeng Z L, . Petrogenesis of the Xihuashan Granites in Southeastern China: Constraints from Geochemistry and In-Situ Analyses of Zircon U-Pb-Hf-O Isotopes. Lithos, 2012, 148: 209-227.
|
| [28] |
Harangi S, Downes H, Kósa L, . Almandine Garnet in Calc-Alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern-Central Europe): Geochemistry, Petrogenesis and Geodynamic Implications. Journal of Petrology, 2001, 42(10): 1813-1843.
|
| [29] |
Harrison T N. Magmatic Garnets in the Cairngorm Granite, Scotland. Mineralogical Magazine, 1988, 52(368): 659-667.
|
| [30] |
Huang H Q, Li X H, Li Z X, . Intraplate Crustal Remelting as the Genesis of Jurassic High-K Granites in the Coastal Region of the Guangdong Province, SE China. Journal of Asian Earth Sciences, 2013, 74: 280-302.
|
| [31] |
Huang H Q, Li X H, Li Z X, . Formation of the Jurassic South China Large Granitic Province: Insights from the Genesis of the Jiufeng Pluton. Chemical Geology, 2015, 401: 43-58.
|
| [32] |
Irber W. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 489-508.
|
| [33] |
Jahn B M, Wu F Y, Capdevila R, . Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing’an Mountains in NE China. Lithos, 2001, 59(4): 171-198.
|
| [34] |
Jahns RH, Tuttle OF. Layered Pegmatite-Aplite Intrusives. Miner-alogical Society of America Special Paper, 1963, 1: 78-92.
|
| [35] |
Jiang H, Jiang S Y, Li W Q, . Highly Fractionated Jurassic I-Type Granites and Related Tungsten Mineralization in the Shirenzhang Deposit, Northern Guangdong, South China: Evidence from Cassiterite and Zircon U-Pb Ages, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Lithos, 2018, 312: 186-203. 313
|
| [36] |
Jiang W C, Li H, Wu J H, . A Newly Found Biotite Syenogranite in the Huangshaping Polymetallic Deposit, South China: Insights into Cu Mineralization. Journal of Earth Science, 2018, 29(3): 537-555.
|
| [37] |
Jiang Y H, Jiang S Y, Dai B Z, . Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China: Implications for a Continental Arc to Rifting. Lithos, 2009, 107(3/4): 185-204.
|
| [38] |
Jiang Y H, Zhu S Q. Petrogenesis of the Late Jurassic Peraluminous Biotite Granites and Muscovite-Bearing Granites in SE China: Geochronological, Elemental and Sr-Nd-O-Hf Isotopic Constraints. Contributions to Mineralogy and Petrology, 2017, 172(11/12): 1-27
|
| [39] |
Jolliff B L, Papike J J, Shearer C K, . Inter- and Intra-Crystal REE Variations in Apatite from the Bob Ingersoll Pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 1989, 53(2): 429-441.
|
| [40] |
Kontak DJ, Corey M. Metasomatic origin of spessartine-rich garnet in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 1988, 26: 315-334.
|
| [41] |
Lackey J S, Romero G A, Bouvier A S, . Dynamic Growth of Garnet in Granitic Magmas. Geology, 2012, 40(2): 171-174.
|
| [42] |
Li B W, Ge J H, Zhang B H. Diffusion in Garnet: a Review. Acta Geochimica, 2018, 37(1): 19-31.
|
| [43] |
Li X H, Li Z X, Li W X, . U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: a Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 2007, 96(1/2): 186-204.
|
| [44] |
Li Z X, Li X H. Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: a Flat-Slab Subduction Model. Geology, 2007, 35(2): 179
|
| [45] |
Li Z X, Li X H, Zhou H W, . Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 2002, 30 2 163
|
| [46] |
Linnen R L. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li+F; Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 1998, 93 7 1013-1025.
|
| [47] |
Linnen R L, Keppler H. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth’s Crust. Contributions to Mineralogy and Petrology, 1997, 128(2/3): 213-227.
|
| [48] |
London D. The Application of Experimental Petrology to the Genesis and Crystallization of Granitic Pegmatites. Canadian Mineralogist, 1992, 30(3): 499-540
|
| [49] |
London D. A Petrologic Assessment of Internal Zonation in Granitic Pegmatites. Lithos, 2014, 184: 74-104. 185/186/187
|
| [50] |
London D. Pegmatites. Canadian Mineralogist, Special Publication, 2008, 10: 347
|
| [51] |
London D, Hervig R L, Morgan G B. Melt-Vapor Solubilities and Elemental Partitioning in Peraluminous Granite-Pegmatite Systems: Experimental Results with Macusani Glass at 200 MPa. Contributions to Mineralogy and Petrology, 1988, 99(3): 360-373.
|
| [52] |
London D, Kontak D J. Granitic Pegmatites: Scientific Wonders and Economic Bonanzas. Elements, 2012, 8(4): 257-261.
|
| [53] |
London D, Morgan G B, Hervig R L. Vapor-Undersaturated Experiments with Macusani glass+H2O at 200 MPa, and the Internal Differentiation of Granitic Pegmatites. Contributions to Mineralogy and Petrology, 1989, 102(1): 1-17.
|
| [54] |
London D, Morgan G B, Paul K A, . Internal Evolution of Miarolitic Granitic Pegmatites at the Little Three Mine, Ramona, California, USA. The Canadian Mineralogist, 2012, 50(4): 1025-1054.
|
| [55] |
Lowenstern J B. Dissolved Volatile Concentrations in an Ore-Forming Magma. Geology, 1994, 22(10): 893
|
| [56] |
Mao J W, Cheng Y B, Chen M H, . Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 2013, 48 3 267-294.
|
| [57] |
Martin R F, de Vito C. The Late-Stage Miniflood of ca in Granitic Pegmatites: An Open-System Acid-Reflux Model Involving Plagioclase in the Exocontact. The Canadian Mineralogist, 2014, 52(2): 165-181.
|
| [58] |
Masuda A, Akagi T. Lanthanide Tetrad Effect Observ Ed in Leucogranites from China. Geochemical Journal, 1989, 23(5): 245-253.
|
| [59] |
Masuda A, Kawakami O, Dohmoto Y, . Lanthanide Tetrad Effects in Nature: Two Mutually Opposite Types, W and M. Geochemical Journal, 1987, 21(3): 119-124.
|
| [60] |
McDonough W F, Sun S S. The Composition of the Earth. Chemical Geology, 1995, 120(3/4): 223-253.
|
| [61] |
McLennan S M. Rare Earth Element Geochemistry and the “Tetrad” Effect. Geochimica et Cosmochimica Acta, 1994, 58(9): 2025-2033.
|
| [62] |
Miller C F, McDowell S M, Mapes R W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 2003, 31(6): 529-532.
|
| [63] |
Miller C F, Stoddard E F. The Role of Manganese in the Paragenesis of Magmatic Garnet: An Example from the Old Woman-Piute Range, California. Journal of Geology, 1982, 90 341-343.
|
| [64] |
Miller J S, Matzel J E P, Miller C F, . Zircon Growth and Recycling during the Assembly of Large, Composite Arc Plutons. Journal of Volcanology and Geothermal Research, 2007, 167(1/2/3/4): 282-299.
|
| [65] |
Monecke T, Dulski P, Kempe U. Origin of Convex Tetrads in Rare Earth Element Patterns of Hydrothermally Altered Siliceous Igneous Rocks from the Zinnwald Sn-W Deposit, Germany. Geochimica et Cosmochimica Acta, 2007, 71(2): 335-353.
|
| [66] |
Monecke T, Kempe U, Monecke J, . Tetrad Effect in Rare Earth Element Distribution Patterns: A Method of Quantification with Application to Rock and Mineral Samples from Granite-Related Rare Metal Deposits. Geochimica et Cosmochimica Acta, 2002, 66(7): 1185-1196.
|
| [67] |
Nabelek P I, Whittington A G, Sirbescu M L C. The Role of H2O in Rapid Emplacement and Crystallization of Granite Pegmatites: Resolving the Paradox of Large Crystals in Highly Undercooled Melts. Contributions to Mineralogy and Petrology, 2010, 160(3): 313-325.
|
| [68] |
Nardi L V S, Formoso M L L, Jarvis K, . REE, Y, Nb, U, and Th Contents and Tetrad Effect in Zircon from a Magmatic-Hydrothermal F-Rich System of Sn-Rare Metal-Cryolite Mineralized Granites from the Pitinga Mine, Amazonia, Brazil. Journal of South American Earth Sciences, 2012, 33(1): 34-42.
|
| [69] |
Nash W P, Crecraft H R. Partition Coefficients for Trace Elements in Silicic Magmas. Geochimica et Cosmochimica Acta, 1985, 49(11): 2309-2322.
|
| [70] |
Neiva A M R, Ramos J M F. Geochemistry of Granitic Aplite-Pegmatite Sills and Petrogenetic Links with Granites, Guarda-Belmonte Area, Central Portugal. European Journal of Mineralogy, 2010, 22(6): 837-854.
|
| [71] |
Neiva A M R, Silva P B, Ramos J M F. Geochemistry of Granitic Aplite-Pegmatite Veins and Sills and Their Minerals from the Sabugal Area, Central Portugal. Neues Jahrbuch Für Mineralogie-Abhandlungen, 2012, 189(1): 49-74.
|
| [72] |
Neiva A M R, Gomes M E P, Ramos J M F, . Geochemistry of Granitic Aplite-Pegmatite Sills and Their Minerals from Arcozelo Da Serra Area (Gouveia, Central Portugal). European Journal of Mineralogy, 2008, 20(4): 465-485.
|
| [73] |
Neiva J M C. Rochas Eruptivas da Península de Macau e das Ilhas de Taipa e Coloane. Boletim da Sociedade Geológica de Portugal, 1944, 3: 145-180.
|
| [74] |
Pan Y M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect — a Discussion of the Article by M. Bau (1996). Contributions to Mineralogy and Petrology, 1997, 128(4): 405-408.
|
| [75] |
Pan Y M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect—A Discussion of the Article by M. Bau (1996). Contributions to Mineralogy and Petrology, 1997, 128(4): 405-408.
|
| [76] |
Pan Y, Breaks FW. Rare-Earth Elements in Fluorapatite, Separation Lake Area, Ontario: Evidence for S-Type Granite-Rare-Element Pegmatite Linkage. Canadian Mineralogist, 1997, 35: 659-671.
|
| [77] |
Peretyazhko I S, Savina E A. Tetrad Effects in the Rare Earth Element Patterns of Granitoid Rocks as an Indicator of Fluoride-Silicate Liquid Immiscibility in Magmatic Systems. Petrology, 2010, 18(5): 514-543.
|
| [78] |
Qiu Z W, Yan Q H, Li S S, . Highly Fractionated Early Cretaceous I-Type Granites and Related Sn Polymetallic Mineralization in the Jinkeng Deposit, Eastern Guangdong, SE China: Constraints from Geochronology, Geochemistry, and Hf Isotopes. Ore Geology Reviews, 2017, 88: 718-738.
|
| [79] |
Quelhas P, Dias Á A, Mata J, . High-Precision Geochronology of Mesozoic Magmatism in Macao, Southeast China: Evidence for Multistage Granite Emplacement. Geoscience Frontiers, 2020, 11(1): 243-263.
|
| [80] |
Quelhas P, Mata J, Dias Á A. Evidence for Mixed Contribution of Mantle and Lower and Upper Crust to the Genesis of Jurassic I-Type Granites from Macao, SE China. GSA Bulletin, 2021, 133(1/2): 37-56.
|
| [81] |
Ranjbar S, Tabatabaei Manesh S M, Mackizadeh M A, . Geochemistry of Major and Rare Earth Elements in Garnet of the Kal-e Kafi Skarn, Anarak Area, Central Iran: Constraints on Processes in a Hydrothermal System. Geochemistry International, 2016, 54(5): 423-438.
|
| [82] |
René M, Stelling J. Garnet-Bearing Granite from the Třebíč Pluton, Bohemian Massif (Czech Republic). Mineralogy and Petrology, 2007, 91(1/2): 55-69.
|
| [83] |
Ribeiro M L, Ramos J F, Pereira E, . The Evolution of the Macao Geological Knowledge. Geologia das Ex-Colónias da Ásia e Oceânia, Macau, 2010, III: 259-266.
|
| [84] |
Ribeiro, M. L., Ramos, J. M., Pereira, E., et al., 1992. Noticia Explicativa da Carta Geológica de Macau na Escala 1/5 000. Serviços Geológicos de Portugal, 46.
|
| [85] |
Rios Reyes CA, Alarcón OMC, Takasu A. A New Interpretation for the Garnet Zoning in Metapelitic Rocks of the Silgará Formation, Southwestern Santander Massif Colombia. Earth Sciences Research Journal, 2009, 12: 7-30.
|
| [86] |
Scallion K L, Jamieson R A, Barr S M, . Texture and Composition of Garnet as a Guide to Contamination of Granitoid Plutons: An Example from the Governor Lake Area, Meguma Terrane, Nova Scotia. The Canadian Mineralogist, 2011, 49(2): 441-458.
|
| [87] |
Sewell R J, Darbyshire D P F, Langford R L, . Geochemistry and Rb-Sr Geochronology of Mesozoic Granites from Hong Kong. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1/2): 269-280.
|
| [88] |
Sewell R J, Campbell S D G, Fletcher C J N, . The Pre-Quaternary Geology of Hong Kong, 2000, Hong Kong: Civil Engineering Department, Hong Kong SAR Government
|
| [89] |
Shellnutt J G, Vaughan M W, Lee H Y, . Late Jurassic Leucogranites of Macao (SE China): a Record of Crustal Recycling during the Early Yanshanian Orogeny. Frontiers in Earth Science, 2020, 8: 1-24.
|
| [90] |
Simmons W B S, Webber K L. Pegmatite Genesis: State of the Art. European Journal of Mineralogy, 2008, 20(4): 421-438.
|
| [91] |
Speer JA, Becker SW. Evolution of Magmatic and Subsolidus AFM Mineral Assemblages in Granitoid Rocks: Biotite, Muscovite, and Garnet in the Cuffytown Creek Pluton, South Carolina. American Mineralogist, 1992, 77: 821-833.
|
| [92] |
Stevens G, Villaros A, Moyen J F. Selective Peritectic Garnet Entrainment as the Origin of Geochemical Diversity in S-Type Granites. Geology, 2007, 35(1): 9-12.
|
| [93] |
Streckeisen A, le Maitre RW. A Chemical Approximation to the Modal QAPF Classification of the Igneous Rocks. Neues Jahrbuch fur Mineralogie Abteilung, 1979, 136: 169-206.
|
| [94] |
Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
|
| [95] |
Takahashi Y, Yoshida H, Sato N, . W- and M-Type Tetrad Effects in REE Patterns for Water-Rock Systems in the Tono Uranium Deposit, Central Japan. Chemical Geology, 2002, 184(3/4): 311-335.
|
| [96] |
Tao J H, Li W X, Li X H, . Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Science China Earth Sciences, 2013, 56(6): 922-939.
|
| [97] |
Taylor J, Stevens G. Selective Entrainment of Peritectic Garnet into S-Type Granitic Magmas: Evidence from Archaean Mid-Crustal Anatectites. Lithos, 2010, 120(3/4): 277-292.
|
| [98] |
Tuttle O F, Bowen N L. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America Memoirs, 1958, 74: 1-146.
|
| [99] |
Veksler I V, Dorfman A M, Kamenetsky M, . Partitioning of Lanthanides and Y between Immiscible Silicate and Fluoride Melts, Fluorite and Cryolite and the Origin of the Lanthanide Tetrad Effect in Igneous Rocks. Geochimica et Cosmochimica Acta, 2005, 69(11): 2847-2860.
|
| [100] |
Villaros A, Stevens G, Buick I S. Tracking S-Type Granite from Source to Emplacement: Clues from Garnet in the Cape Granite Suite. Lithos, 2009, 112(3/4): 217-235.
|
| [101] |
Wang Y J, Fan W M, Zhang G W, . Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 2013, 23(4): 1273-1305.
|
| [102] |
Whitworth M P. Petrogenetic Implications of Garnets Associated with Lithium Pegmatites from SE Ireland. Mineralogical Magazine, 1992, 56(382): 75-83.
|
| [103] |
Wu C Z, Liu S H, Gu L X, . Formation Mechanism of the Lanthanide Tetrad Effect for a Topaz- and Amazonite-Bearing Leucogranite Pluton in Eastern Xinjiang, NW China. Journal of Asian Earth Sciences, 2011, 42(5): 903-916.
|
| [104] |
Wu F Y, Liu X C, Ji W Q, . Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 2017, 60(7): 1201-1219.
|
| [105] |
Wu F Y, Sun D Y, Jahn B M, . A Jurassic Garnet-Bearing Granitic Pluton from NE China Showing Tetrad REE Patterns. Journal of Asian Earth Sciences, 2004, 23(5): 731-744.
|
| [106] |
Xiang Y X, Yang J H, Chen J Y, . Petrogenesis of Lingshan Highly Fractionated Granites in the Southeast China: Implication for Nb-Ta Mineralization. Ore Geology Reviews, 2017, 89: 495-525.
|
| [107] |
Xu B, Jiang S Y, Wang R, . Late Cretaceous Granites from the Giant Dulong Sn-Polymetallic Ore District in Yunnan Province, South China: Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos, 2015, 218/219: 54-72.
|
| [108] |
Yang J B, Zhao Z D, Hou Q Y, . Petrogenesis of Cretaceous (133–84 Ma) Intermediate Dykes and Host Granites in Southeastern China: Implications for Lithospheric Extension, Continental Crustal Growth, and Geodynamics of Palaeo-Pacific Subduction. Lithos, 2018, 296: 195-211. 297/298/299
|
| [109] |
Yang Y L, Ni P, Yan J, . Early to Late Yanshanian I-Type Granites in Fujian Province, SE China: Implications for the Tectonic Setting and Mo Mineralization. Journal of Asian Earth Sciences, 2017, 137: 194-219.
|
| [110] |
Yardley B W D. An Empirical Study of Diffusion in Garnet. American Mineralogist, 1977, 62: 793-800.
|
| [111] |
Ye M F, Li X H, Li W X, . SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block. Gondwana Research, 2007, 12(1/2): 144-156.
|
| [112] |
Yurimoto H, Duke E F, Papike J J, . Are Discontinuous Chondrite-Normalized REE Patterns in Pegmatitic Granite Systems the Results of Monazite Fractionation?. Geochimica et Cosmochimica Acta, 1990, 54(7): 2141-2145.
|
| [113] |
Zajacz Z, Halter W E, Pettke T, . Determination of Fluid/Melt Partition Coefficients by LA-ICPMS Analysis of Co-Existing Fluid and Silicate Melt Inclusions: Controls on Element Partitioning. Geochimica et Cosmochimica Acta, 2008, 72(8): 2169-2197.
|
| [114] |
Zaraisky G P, Aksyuk A M, Devyatova V N, . The Zr/Hf Ratio as a Fractionation Indicator of Rare-Metal Granites. Petrology, 2009, 17(1): 25-45.
|
| [115] |
Zhang Y, Yang J H, Chen J Y, . Petrogenesis of Jurassic Tungsten-Bearing Granites in the Nanling Range, South China: Evidence from Whole-Rock Geochemistry and Zircon U-Pb and Hf-O Isotopes. Lithos, 2017, 278: 166-180. 279/280/281
|
| [116] |
Zhang Y, Yang J H, Sun J F, . Petrogenesis of Jurassic Fractionated I-Type Granites in Southeast China: Constraints from Whole-Rock Geochemical and Zircon U-Pb and Hf-O Isotopes. Journal of Asian Earth Sciences, 2015, 111: 268-283.
|
| [117] |
Zhao J X, Cooper J A. Fractionation of Monazite in the Development of V-Shaped REE Patterns in Leucogranite Systems: Evidence from a Muscovite Leucogranite Body in Central Australia. Lithos, 1993, 30(1): 23-32.
|
| [118] |
Zhao Z H, Xiong X L, Han X D, . Controls on the REE Tetrad Effect in Granites: Evidence from the Qianlishan and Baerzhe Granites, China. Geochemical Journal, 2002, 36(6): 527-543.
|
| [119] |
Zhou X M, Li W X. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 2000, 326(3/4): 269-287.
|
| [120] |
Zhou X M, Sun T, Shen W Z, . Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: a Response to Tectonic Evolution. Episodes, 2006, 29(1): 26-33.
|
| [121] |
Zhou Z M, Ma C Q, Xie C F, . Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 2016, 27(3): 444-460.
|