Dehydration Melting and Proterozoic Granite Petrogenesis in a Collisional Orogen—A Case from the Svecofennian of Southern Finland
Tom Andersen , O. Tapani Rämö
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1289 -1299.
Dehydration Melting and Proterozoic Granite Petrogenesis in a Collisional Orogen—A Case from the Svecofennian of Southern Finland
Dehydration melting of metasupracrustal rocks at mid- to deep-crustal levels can generate water undersaturated granitic melt. In this study, we evaluate the potential of ∼1.89–1.88 Ga metasupracrustal rocks of the Precambrian of southern Finland as source rocks for the 1.86–1.79 Ga late-orogenic leucogranites in the region, using the Rhyolite-MELTS approach. Melt close in composition to leucogranite is produced over a range of realistic pressures (5 to 8 kbar) and temperatures (800 to 850 °C), at 20%–30% of partial melting, allowing separation of melt from unmelted residue. The solid residue is a dry, enderbitic to charnoenderbitic ganulite depleted in incompatible components, and will only yield further melt above 1 000–1 050 °C, when rapidly increasing fractions of increasingly calcic (granodioritic to tonalitic) melts are formed. The solid residue after melt extraction is incapable of producing syenogranitic magmas similar to the Mid-Proterozoic, A-type rapakivi granites on further heating. The granitic fraction of the syenogranitic rapakivi complexes must thus have been formed by a different chain of processes, involving mantle-derived mafic melts and melts from crustal rock types not conditioned by the preceding late-orogenic Svecofennian anatexis.
leucogranite / rapakivi granite / anatexis / restite / depleted granulite / Finland
| [1] |
|
| [2] |
Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. In: Medaris, L. G. Jr., Byers, C. W., Mickelson, D. M., et al., eds., Proterozoic Geology. Geological Society of America Memoir, 161: 133–154 |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Geological Survey of Finland, 2020. Rock Geochemical Data of Finland, GTK 2020. http://tupa.gtk.fi/paikkatieto/meta/rock_geochemical_data_of_finland.html |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
/
| 〈 |
|
〉 |