Dehydration Melting and Proterozoic Granite Petrogenesis in a Collisional Orogen—A Case from the Svecofennian of Southern Finland

Tom Andersen, O. Tapani Rämö

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1289-1299.

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1289-1299. DOI: 10.1007/s12583-020-1385-8
Article

Dehydration Melting and Proterozoic Granite Petrogenesis in a Collisional Orogen—A Case from the Svecofennian of Southern Finland

Author information +
History +

Abstract

Dehydration melting of metasupracrustal rocks at mid- to deep-crustal levels can generate water undersaturated granitic melt. In this study, we evaluate the potential of ∼1.89–1.88 Ga metasupracrustal rocks of the Precambrian of southern Finland as source rocks for the 1.86–1.79 Ga late-orogenic leucogranites in the region, using the Rhyolite-MELTS approach. Melt close in composition to leucogranite is produced over a range of realistic pressures (5 to 8 kbar) and temperatures (800 to 850 °C), at 20%–30% of partial melting, allowing separation of melt from unmelted residue. The solid residue is a dry, enderbitic to charnoenderbitic ganulite depleted in incompatible components, and will only yield further melt above 1 000–1 050 °C, when rapidly increasing fractions of increasingly calcic (granodioritic to tonalitic) melts are formed. The solid residue after melt extraction is incapable of producing syenogranitic magmas similar to the Mid-Proterozoic, A-type rapakivi granites on further heating. The granitic fraction of the syenogranitic rapakivi complexes must thus have been formed by a different chain of processes, involving mantle-derived mafic melts and melts from crustal rock types not conditioned by the preceding late-orogenic Svecofennian anatexis.

Keywords

leucogranite / rapakivi granite / anatexis / restite / depleted granulite / Finland

Cite this article

Download citation ▾
Tom Andersen, O. Tapani Rämö. Dehydration Melting and Proterozoic Granite Petrogenesis in a Collisional Orogen—A Case from the Svecofennian of Southern Finland. Journal of Earth Science, 2021, 32(6): 1289‒1299 https://doi.org/10.1007/s12583-020-1385-8

References

Anderson J L. Mineral Equilibria and Crystallization Conditions in the Late Precambrian Wolf River Rapakivi Massif, Wisconsin. American Journal of Science, 1980, 280(4): 289-332.
CrossRef Google scholar
Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. In: Medaris, L. G. Jr., Byers, C. W., Mickelson, D. M., et al., eds., Proterozoic Geology. Geological Society of America Memoir, 161: 133–154
Arzi A A. Critical Phenomena in the Rheology of Partially Melted Rocks. Tecnonophysics, 1978, 44(1–4): 173-184.
CrossRef Google scholar
Beard J S, Lofgren G E. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 1991, 32(2): 365-401.
CrossRef Google scholar
Berman R G. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 1988, 29(2): 445-522.
CrossRef Google scholar
Bons P D, Arnold J, Elburg M A, . Melt Extraction and Accumulation from Partially Molten Rocks. Lithos, 2004, 78(1/2): 25-42.
CrossRef Google scholar
Bucher K, Frey M. Petrogenesis of Metamorphic Rocks, 2002 7th Edition Berlin: Springer Verlag, 356
CrossRef Google scholar
Bulau J R, Waff H, Tyburczy J A. Mechanical and Thermodynamic Constraints of Fluid Distribution in Partial Melts. Journal of Geophysical Research, 1979, 84(B11): 6102-6108.
CrossRef Google scholar
Chamberlain C P, Sonder L J. Heat-Producing Elements and the Thermal and Baric Patterns of Metamorphic Belts. Science, 1990, 250(4982): 763-769.
CrossRef Google scholar
Clauser C. Gupta H K. Radiogenic Heat Production in Rocks. Encyclopedia of Solid Earth Geophysics, 2011, Dordrecht: Springer, 1018-1024.
CrossRef Google scholar
Crawford M L, Klepeis K A, Gehrels G E, . Mid-Cretaceous-Recent Crustal Evolution in the Central Coast Orogen, British Columbia and Southeastern Alaska. Geological Society of America Special Paper, 2009, 456: 97-124.
Creaser R A, White A J R. Yardea Dacite-Large-Volume, High-Temperature Felsic Volcanism from the Middle Proterozoic of South Australia. Geology, 1991, 19(1): 48-51.
CrossRef Google scholar
Ehlers C, Lindroos A, Selonen O. The Late Svecofennian Granite-Migmatite Zone of Southern Finland—A Belt of Transpressive Deformation and Granite Emplacement. Precambrian Research, 1993, 64(1–4): 295-309.
CrossRef Google scholar
Ehrlich K, Verš E, Kirs J, . Using a Titanium-in-Quartz Geothermometer for Crystallization Temperature Estimation of the Palaeoproterozoic Suursaari Quartz Porphyry. Estonian Journal of Earth Science, 2012, 61(4): 195-204.
CrossRef Google scholar
Eklund O, Shebanov A D. The Origin of Rapakivi Texture by Sub-Isothermal Decompression. Precambrian Research, 1999, 95(1/2): 129-146.
CrossRef Google scholar
Frost B R, Frost C D. CO2, Melts and Granulite Metamorphism. Nature, 1987, 327(6122): 503-506.
CrossRef Google scholar
Geological Survey of Finland, 2020. Rock Geochemical Data of Finland, GTK 2020. http://tupa.gtk.fi/paikkatieto/meta/rock_geochemical_data_of_finland.html
Gerdes A. Magma Homogenization during Anatexis, Ascent and/or Emplacement? Constraints from the Variscan Weinsberg Granites. Terra Nova, 2001, 13(4): 305-312.
CrossRef Google scholar
Gerdes A, Wörner G, Henk A. Post-Collisional Granite Generation and HT-LP Metamorphism by Radiogenic Heating: The Variscan South Bohemian Batholith. Journal of the Geological Society, London, 2000, 157: 577-587.
CrossRef Google scholar
Ghiorso M S, Sack R O. Chemical Mass Transfer in Magmatic Processes IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 1995, 119(2): 197-212.
CrossRef Google scholar
Ghiorso M S, Gualda G A R. An H2O-CO2 Mixed Fluid Saturation Model Compatible with Rhyolite-MELTS. Contributions to Mineralogy and Petrology, 2015, 169(6): 1-30.
CrossRef Google scholar
Gualda G A R, Ghiorso M S. MELTS-Excel: A Microsoft Excel-Based MELTS Interface for Research and Teaching of Magma Properties and Evolution. Geochemistry, Geophysics, Geosystems, 2015, 16(1): 315-324.
CrossRef Google scholar
Gualda G A R, Ghiorso M S, Lemons R V, . Rhyolite-MELTS: A Modified Calibration of MELTS Optimized for Silica-Rich, Fluid-Bearing Magmatic Systems. Journal of Petrology, 2012, 53(5): 875-890.
CrossRef Google scholar
Heinonen A P, Rämö O T, Mänttäri I, . Zircon as a Proxy for the Magmatic Evolution of Proterozoic Ferroan Granites; The Wiborg Rapakivi Granite Batholith, SE Finland. Journal of Petrology, 2017, 58(12): 2493-2517.
CrossRef Google scholar
Heinonen A P, Andersen T, Rämö O T. Re-Evaluation of Rapakivi Petrogenesis: Source Constraints from the Hf Isotope Composition of Zircon in the Rapakivi Granites and Associated Mafic Rocks of Southern Finland. Journal of Petrology, 2010, 51(8): 1687-1709.
CrossRef Google scholar
Hölttä P, Heilimo E. Metamorphic Map of Finland. Geological Survey of Finland, Special Paper, 2017, 60: 77-128.
Holtz F, Becker A, Freise M, . The Water-Undersaturated and Dry Qz-Ab-Or System Revisited. Experimental Results at very Low Water Activities and Geological Implications. Contributions to Mineralogy and Petrology, 2001, 141(3): 347-357.
CrossRef Google scholar
Huhma H. Sm-Nd, U-Pb and Pb-Pb Isotopic Evidence for the Origin of the Early Proterozoic Svecokarelian Crust in Finland. Geological Survey of Finland Bulletin, 1986, 337: 1-52.
Janoušek V, Farrow C M, Erban V. Interpretation of Whole-Rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 2006, 47(6): 1255-1259.
CrossRef Google scholar
Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks, 1996, Berlin: Springer Verlag, 335
CrossRef Google scholar
Jurewicz S R, Watson E B. The Distribution of Partial Melt in a Granitic System: The Application of Liquid Phase Sintering Theory. Geochimica et Cosmochimica Acta, 1985, 49(5): 1109-1121.
CrossRef Google scholar
Korsman K, Koistinen T, Kohonen J, . Bedrock Map of Finland 1: 1 000 000, 1997, Espoo: Geologian Tutkimuskeskus
Kukkonen I T, Lauri L S. Modelling the Thermal Evolution of a Collisional Precambrian Orogen: High Heat Production Migmatitic Granites of Southern Finland. Precambrian Research, 2009, 168(3/4): 233-246.
CrossRef Google scholar
Kukkonen I T, Lauri L S. Mesoproterozoic Rapakivi Granite Magmatism in the Fennoscandian Shield and Adjacent Areas: Role of Crustal Radiogenic Heating. Ninth Symposium on the Structure, Composition and Evolution of the Lithosphere in Fennoscandia. Geological Survey of Finland Report, 2016, S-65: 65-66.
Kurhila M, Andersen T, Rämö O T. Diverse Sources of Crustal Granitic Magma: Lu-Hf Isotope Data on Zircon in Three Paleoproterozoic Leucogranites of Southern Finland. Lithos, 2010, 115(1–4): 263-271.
CrossRef Google scholar
Kurhila M, Mänttäri I, Vaasjoki M, . U-Pb Geochronological Constraints of the Late Svecofennian Leucogranites of Southern Finland. Precambrian Research, 2011, 190(1–4): 1-24.
CrossRef Google scholar
Lahtinen R, Korja A, Nironen M. Lehtinen M, Nurmi P A, Rämö O T. Paleoproterozoic Tectonic Evolution. Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield, 2005, Amsterdam: Elsevier, 481-531. Volume 14
CrossRef Google scholar
Lahtinen R, Huhma H, Kähkönen Y, . Paleoproterozoic Sediment Recycling during Multiphase Orogenic Evolution in Fennoscandia, the Tampere and Pirkanmaa Belts, Finland. Precambrian Research, 2009, 174(3/4): 310-336.
CrossRef Google scholar
Luukas J, Kousa J, Nironen M, . Major Stratigraphic Units in the Bedrock of Finland, and an Approach to Tectonostratigraphic Division. Geological Survey of Finland, Special Paper, 2017, 60: 9-40.
McKenzie D. The Generation and Compaction of Partially Molten Rock. Journal of Petrology, 1984, 25(3): 713-765.
CrossRef Google scholar
Miller C F, Watson E B, Harrison T M. Perspectives of the Source, Segregation and Transport of Granitoid Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1988, 79: 135-156.
CrossRef Google scholar
Milord I, Sawyer E W, Brown M. Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-Pelitic Metasedimentary Rocks: An Example from St. Malo, France. Journal of Petrology, 2001, 42(3): 487-505.
CrossRef Google scholar
Nekvasil H. Ascent of Felsic Magmas and Formation of Rapakivi. American Mineralogist, 1991, 76(7/8): 1279-1290
Nironen M. Lehtinen M, Nurmi P A, Rämö O T. Proterozoic Orogenic Granitoid Rocks. Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield, 2005, Amsterdam: Elsevier, 443-479. Volume 14
CrossRef Google scholar
Nironen M. Guide to the Geological Map of Finland—Bedrock 1: 1 000 000. Geological Survey of Finland, Special Paper, 2017, 60: 41-76.
Pajunen M, Airo M-L, Elminen T, . Tectonic Evolution of the Svecofennian Crust in Southern Finland. Geological Survey of Finland, Special Paper, 2008, 47: 15-160.
Rabinowics M, Vigneresse J-L. Melt Segregation under Compaction and Shear Channeling: Application to Granitic Magma Segregation in a Continental Crust. Journal of Geophysical Research, 2004, 109: B4407
Rämö O T, Haapala I. Lehtinen M, Nurmi P A, Rämö O T. Rapakivi Granites. Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield, 2005, Amsterdam: Elsevier, 553-562. Volume 14
Rämö O T, Mänttäri I. Geochronology of the Suomenniemi Rapakivi Granite Complex Revisited: Implications of Point-Specific Errors on Zircon U-Pb and Refined λ 87 on Whole-Rock Rb-Sr. Bulletin of the Geological Society of Finland, 2015, 87: 25-45.
CrossRef Google scholar
Rämö O T, Turkki V, Mänttäri I, . Age and Isotopic Fingerprints of Some Plutonic Rocks in the Wiborg Rapakivi Granite Batholith with Special Reference to the Dark Wiborgite of the Ristisaari Island. Bulletin of the Geological Society of Finland, 2014, 86: 71-91.
CrossRef Google scholar
Rumble D. The Adiabatic Gradient and Adiabatic Compressibility. Carnegie Institution of Washington Year Book, 1976, 75: 651-655.
Sandiford M, Hand M, McLaren S. High Geothermal Gradient Metamorphism during Thermal Subsidence. Earth and Planetary Science Letters, 1998, 163: 149-165.
CrossRef Google scholar
Shaw D M. Trace Element Fractionation during Anataxis. Geochimica et Cosmochimica Acta, 1970, 34: 237-243.
CrossRef Google scholar
Skyttä P, Mänttäri I. Structural Setting of Late Svecofennian Granites and Pegmatites in Uusimaa Belt, SW Finland: Age Constraints and Implications for Crustal Evolution. Precambrian Research, 2008, 164(1/2): 86-109.
CrossRef Google scholar
Spear F S, Kohn M J, Cheney J T. P-T Paths from Anatectic Pelites. Contributions to Mineralogy and Petrology, 1999, 134(1): 17-32.
CrossRef Google scholar
Vanderhaeghe O, Burg J P, Teyssier C. Exhumation of Migmatites in Two Collapsed Orogens: Canadian Cordillera and French Variscides. Geological Society Special Publication, 1999, 154: 181-204.
CrossRef Google scholar
Vielzeuf D, Holloway J R. Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 1988, 98(3): 257-276.
CrossRef Google scholar
Vigneresse J L. The Role of Discontinuous Magma Inputs in Felsic Magma and Ore Generation. Ore Geology Reviews, 2007, 30(3/4): 181-216.
CrossRef Google scholar
Wolf M B, Wyllie P J. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 1994, 115(4): 369-383.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/