Geochemical and Nd-Sr Isotopic Compositions of Hypabyssal Adakites in the Torud-Ahmad Abad Magmatic Belt, Northern Central Iran Zone: Analysis of Petrogenesis and Geodynamic Implications

Fazilat Yousefi , Ryan D. Mills , Mahmoud Sadeghian , David R. Lentz , Christina Wanhainen , Habibollah Ghasemi , Laicheng Miao

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1428 -1444.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1428 -1444. DOI: 10.1007/s12583-020-1378-7
Article

Geochemical and Nd-Sr Isotopic Compositions of Hypabyssal Adakites in the Torud-Ahmad Abad Magmatic Belt, Northern Central Iran Zone: Analysis of Petrogenesis and Geodynamic Implications

Author information +
History +
PDF

Abstract

Eocene intermediate to felsic subvolcanic rocks of the Torud-Ahmad Abad magmatic belt (TAMB), in the northern part of the Central Iran zone, are exposed between the Torud and Ahmad Abad regions in South-Southeast Shahrood. These igneous rocks include hypabyssal dacite, trachyte, andesite, trachy-andesite, and basaltic andesite; they are mainly composed of phenocrysts and microcrystalline groundmass of pyroxene, amphibole, and plagioclase, with minor biotite and titanomagnetite; they form domal structures (plugs and stocks), dikes, and sills that intruded into Neoproterozoic to cogenetic Eocene volcano-sedimentary sequences. Based on isotopic analysis of these intermediate to acidic rocks, initial ratios of 143Nd/144Nd range from 0.512 775 to 0.512 893 and initial ratios of 87Sr/86Sr range from 0.703 746 to 0.705 314, with quite positive ε Nd(i) values of +3.69 to +6.00. They are enriched in light rare earth elements and large ion lithophile elements and depleted in heavy rare earth elements and high-field strength elements, the SiO2 content is (52–62) wt.%, and Na2O content >3 wt.%, Al2O3 content >16 wt.%, Yb <1.8 ppm, and Y <18 ppm. These geological, geochemical, and Sr and Nd isotopic data are consistent with adakitic signatures originating by partial melting of the subducted Neo-Tethys oceanic slab (Sabzevar branch) and lithospheric suprasubduction zone mantle. The mantle signatures typifying the rapidly emplaced adakitic rocks (slab (high-silica adakite) and suprasubduction zone (low-silica adakite) melts) together with their locally voluminous extent are evidences that support a locally extensional geodynamic setting; and the evidence is consistent with an evolution to local transpression in the Late Eocene in this convergent margin arc environment to rifting (basalts to adakites) towards submarine conditions in the Neogene.

Keywords

isotope geochemistry / adakite rocks / Central Iran zone / Shahrood / Iran

Cite this article

Download citation ▾
Fazilat Yousefi, Ryan D. Mills, Mahmoud Sadeghian, David R. Lentz, Christina Wanhainen, Habibollah Ghasemi, Laicheng Miao. Geochemical and Nd-Sr Isotopic Compositions of Hypabyssal Adakites in the Torud-Ahmad Abad Magmatic Belt, Northern Central Iran Zone: Analysis of Petrogenesis and Geodynamic Implications. Journal of Earth Science, 2021, 32(6): 1428-1444 DOI:10.1007/s12583-020-1378-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmadian J, Murata M, Nadimi A, . Recent Tectonic Activity of Iran Deduced from Young Magmatism Evidences. Bulletin of Center for Collaboration in Community Naruto University of Education, 2014, 28: 23-38.

[2]

Azizi H, Tanaka T, Asahara Y, . Discrimination of the Age and Tectonic Setting for Magmatic Rocks along the Zagros Thrust Zone, Northwest Iran, Using the Zircon U-Pb Age and Sr-Nd Isotopes. Journal of Geodynamics, 2011, 52(3): 304-320. 4

[3]

Balaghi Einalou M, Sadeghian M, Zhai M G, . Zircon U-Pb Ages, Hf Isotopes and Geochemistry of the Schists, Gneisses and Granites in Delbar Metamorphic-Igneous Complex, SE of Shahrood (Iran): Implications for Neoproterozoic Geodynamic Evolutions of Central Iran. Journal of Asian Earth Sciences, 2014, 92: 92-124.

[4]

Berberian F, Berberian M. Tectono-Plutonic Episodes in Iran. Geological Survey of Iran, Report, 1981, 52: 566-593.

[5]

Boomeri M, Nakashima K, Lentz D R. The Sarcheshmeh Porphyry Copper Deposit, Kerman, Iran: A Mineralogical Analysis of the Igneous Rocks and Alteration Zones Including Halogen Element Systematics Related to Cu Mineralization Processes. Ore Geology Reviews, 2010, 38(4): 367-381.

[6]

Borg L E, Clynne M A, Bullen T D. The Variable Role of Slab Derived Fluids in the Generation of a Suite of Primitive Calc-Alkaline Lavas from the Southernmost Cascades: California. Canadian Mineralogist, 1997, 35: 425-452.

[7]

Castillo P R. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 2006, 51(3): 257-268.

[8]

Castillo P R. Adakite Petrogenesis. Lithos, 2012, 135: 304-316.

[9]

Chiaradia M. Adakite-Like Magmas from Fractional Crystallization and Melting-Assimilation of Mafic Lower Crust (Eocene Macuchi Arc, Western Cordillera, Ecuador). Chemical Geology, 2009, 265(3): 468-487. 4

[10]

Chung S L, Liu D Y, Ji J Q, . Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 2003, 31(11): 1021-1024.

[11]

Davies J H, Stevenson D J. Physical Model of Source Region of Subduction Zone Volcanics. Journal of Geophysical Research: Solid Earth, 1992, 97(B2): 2037-2070.

[12]

Defant M J, Drummond M S. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347(6294): 662-665.

[13]

Defant M J, Richerson P M, de Boer J Z, . Dacite Genesis Via both Slab Melting and Differentiation: Petrogenesis of La Yeguada Volcanic Complex, Panama. Journal of Petrology, 1991, 32(6): 1101-1142.

[14]

Eyuboglu Y, Chung S L, Santosh M, . Transition from Shoshonitic to Adakitic Magmatism in the Eastern Pontides, NE Turkey: Implications for Slab Window Melting. Gondwana Research, 2011, 19(2): 413-429.

[15]

Eyuboglu Y, Santosh M, Yi K, . Discovery of Miocene Adakitic Dacite from the Eastern Pontides Belt (NE Turkey) and a Revised Geodynamic Model for the Late Cenozoic Evolution of the Eastern Mediterranean Region. Lithos, 2012, 146: 218-232. 147

[16]

Ghasemi H, Rezaei-Kahkhaei M. Petrochemistry and Tectonic Setting of the Davarzan-Abbasabad Eocene Volcanic (DAEV) Rocks, NE Iran. Mineralogy and Petrology, 2015, 109(2): 235-252.

[17]

Gill J B. Orogenic Andesites and Plate Tectonics, 1981, Berlin: Springer, 390

[18]

Gorton M P, Schandl E S. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 2000, 38(5): 1065-1073.

[19]

Guest B, Horton B K, Axen G J, . Middle to Late Cenozoic Basin Evolution in the Western Alborz Mountains: Implications for the Onset of Collisional Deformation in Northern Iran. Tectonics, 2007, 26(6): 1-26.

[20]

Hamilton W B. Plate Tectonics and Island Arcs. Geological Society of America Bulletin, 1988, 100(10): 1503-1527.

[21]

Harker A. The Natural History of Igneous Rocks, 1909, London: Methuen, 255

[22]

Harvey J, Baxter E F. An Improved Method for TIMS High Precision Neodymium Isotope Analysis of very Small Aliquots (1–10 ng). Chemical Geology, 2009, 258(3): 251-257. 4

[23]

Hassanzadeh J, Axen G J, Guest B, . The Alborz and NW Urumieh-Dokhtar Magmatic Belts, Iran: Rifted Parts of a Single Ancestral Arc. Geol. Soc. Am. Abstr. Programs, 2004, 36(5): 434

[24]

Hastie A R, Kerr A C, McDonald I, . Geochronology, Geochemistry and Petrogenesis of Rhyodacite Lavas in Eastern Jamaica: A New Adakite Subgroup Analogous to Early Archaean Continental Crust?. Chemical Geology, 2010, 276 3 344-359. 4

[25]

He Y S, Li S G, Hoefs J, . Sr-Nd-Pb Isotopic Compositions of Early Cretaceous Granitoids from the Dabie Orogen: Constraints on the Recycled Lower Continental Crust. Lithos, 2013, 156–159: 204-217.

[26]

Hosseini S H, Sadeghian M, Zhai M G, . Petrology, Geochemistry and Zircon U-Pb Dating of Band-E-Hezarchah Metabasites (NE Iran): An Evidence for Back-Arc Magmatism along the Northern Active Margin of Gondwana. Geochemistry, 2015, 75(2): 207-218.

[27]

Hyndman R D, Currie C A, Mazzotti S P. Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat. GSA Today, 2005, 15(2): 4-10.

[28]

Jenner F E, O’Neill H S C. Analysis of 60 Elements in 616 Ocean Floor Basaltic Glasses. Geochemistry, Geophysics, Geosystems, 2012, 13(2): Q02005

[29]

Kaygusuz A. K/Ar Ages and Geochemistry of the Post-Collisional Volcanic Rocks in the Ilica (Erzurum) Area, Eastern Turkey. Neues Jahrbuch für Mineralogie-Abhandlungen, 2009, 186 1 21-36.

[30]

Kaygusuz A, Aslan Z, Siebel W, . Geochemical and Sr-Nd Isotopic Characteristics of Post-Collision Calc-Alkaline Volcanics in Eastern Pontide (NE Turkey). Turkish Journal of Earth Sciences, 2011, 20: 137-159.

[31]

Karsli O, Uysal İ, Dilek Y, . Geochemical Modelling of Early Eocene Adakitic Magmatism in the Eastern Pontides, NE Anatolia: Continental Crust or Subducted Oceanic Slab Origin?. International Geology Review, 2013, 55(16): 2083-2095.

[32]

Keskin, M., Pearce, J. A., Kempton, P. D., et al., 2006. Magma-Crust Interactions and Magma Plumbing in a Postcollisional Setting: Geochemistry Evidence from the Erzurum Kars Volcanic Plateau, Eastern Turkey. In: Dilek, Y., Pavlides, S., eds., Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geol. Soc. Am., Special Publication, 409: 475–505

[33]

Kusky T M, Windley B F, Polat A. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 2018, 29(6): 1291-1303.

[34]

Lentz D R. Petrogenetic Evolution of Felsic Volcanic Sequences Associated with Phanerozoic Volcanic-Hosted Massive Sulphide Systems: The Role of Extensional Geodynamics. Ore Geology Reviews, 1998, 12(5): 289-327.

[35]

Li C F, Li X H, Li Q L, . Simultaneous Determination of 143Nd/144Nd and 147Sm/144Nd Ratios and Sm-Nd Contents from the Same Filament Loaded with Purified Sm-Nd Aliquot from Geological Samples by Isotope Dilution Thermal Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84(14): 6040-6047.

[36]

Li C F, Li X H, Li Q L, . Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 2012, 727: 54-60.

[37]

Li D, He D F, Qi X F, . How was the Carboniferous Balkhash-West Junggar Remnant Ocean Filled and Closed? Insights from the Well Tacan-1 Strata in the Tacheng Basin, NW China. Gondwana Research, 2015, 27(1): 342-362.

[38]

Lucci F, Rossetti F, White J C, . Tschermak Fractionation in Calc-Alkaline Magmas: The Eocene Sabzevar Volcanism (NE Iran). Arabian Journal of Geosciences, 2016, 9(10): 573

[39]

Lundblad S P. Evolution of Small Carbonate Platforms in the Umbria-Marche Apennines, Italy, 1994, North Carolina, USA: The University of North Carolina at Chapel Hill

[40]

Ma Q, Zheng J P, Xu Y G, . Are Continental “Adakites” Derived from Thickened or Foundered Lower Crust?. Earth and Planetary Science Letters, 2015, 419: 125-133.

[41]

McQuarrie N, Stock J M, Verdel C, . Cenozoic Evolution of Neotethys and Implications for the Causes of Plate Motions. Geophysical Research Letters, 2003, 30(20): 2036

[42]

Martin H, Smithies R H, Rapp R, . An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution. Lithos, 2005, 79 1 1-24. 2

[43]

Martin H. Condie K C. The Archean Grey Gneisses and the Genesis of the Continental Crust. Archean Crustal Evolution, 1994, Amsterdam: Elsevier, 205-259.

[44]

Mathieu L, Racicot D. Petrogenetic Study of the Multiphase Chibougamau Pluton: Archaean Magmas Associated with Cu-Au Magmato-Hydrothermal Systems. Minerals, 2019, 9(3): 174

[45]

Mehdipour Ghazi J, Moazzen M. Geodynamic Evolution of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. Turkish Journal of Earth Sciences, 2015, 24: 513-528.

[46]

Middlemost, E. A. K., 1986. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Addison-Wesley Longman. 280

[47]

Moghadam H S, Rossetti F, Lucci F, . The Calc-Alkaline and Adakitic Volcanism of the Sabzevar Structural Zone (NE Iran): Implications for the Eocene Magmatic Flare-up in Central Iran. Lithos, 2016, 248–251 517-535.

[48]

Mohajjel M, Fergusson C L, Sahandi M R. Cretaceous-Tertiary Convergence and Continental Collision, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 2003, 21(4): 397-412.

[49]

Mori L, Gómez-Tuena A, Cai Y, . Effects of Prolonged Flat Subduction on the Miocene Magmatic Record of the Central Trans-Mexican Volcanic Belt. Chemical Geology, 2007, 244(3): 452-473. 4

[50]

Moyen J F, Martin H. Forty Years of TTG Research. Lithos, 2012, 148: 312-336.

[51]

Moyen J F. High Sr/Y and La/Yb Ratios: The Meaning of the “Adakitic Signature”. Lithos, 2009, 112(3): 556-574. 4

[52]

Murphy J B. Arc-Magmatism II: Geochemical and Isotopic Characteristics. Geoscience Canada, 2007, 34: 7-35.

[53]

Nakamura N. Determination of REE, Ba, Fe, Mg, Na and K in Carbonaceous and Ordinary Chondrites. Geochimica et Cosmochimica Acta, 1974, 38(5): 757-775.

[54]

Nezafati, N., 2015. Mineral Resources of Iran: An Overview. In: 66th Bergund Hüttenmännischer Tag (BHT). June 17–19, 2015, Freiberg, Germany. 1–33

[55]

Nicholson K N, Black P M, Hoskin P W O, . Silicic Volcanism and Back-Arc Extension Related to Migration of the Late Cainozoic Australian-Pacific Plate Boundary. Journal of Volcanology and Geothermal Research, 2004, 131(3): 295-306. 4

[56]

Özyurt M, Altunkaynak Ş. Origin of Eocene Adakitic Magmatism in Northwest Turkey. Journal of Asian Earth Sciences, 2020, 190: 104147

[57]

Pearce J A. Immobile Element Fingerprinting of Ophiolites. Elements, 2014, 10(2): 101-108.

[58]

Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956-983.

[59]

Pearce J A, Peate D W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 251-285.

[60]

Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

[61]

Peterman Z E, Barker F. Rb-Sr Whole-Rock Age of Trondhjemites and Related Rocks of the South Western Trondheim Region, Norway. United States Geological Survey Open File Report, 1976, 76 1-17.

[62]

Pirajno F. A Classification of Mineral Systems, Overviews of Plate Tectonic Margins and Examples of Ore Deposits Associated with Convergent Margins. Gondwana Research, 2016, 33: 44-62.

[63]

Plank T. Keeling R F. The Chemical Composition of Subducting Sediments. Treatise on Geochemistry, 2014, Amsterdam: Elsevier, 607-629.

[64]

Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 1995, 36(4): 891-931.

[65]

Ricou L E, Braud J, Brunn J H. Le Zagros. Mémoire hors Série de la Société Géologique de France, 1977, 8: 33-52.

[66]

Rollinson H. Using Geochemical Data: Evaluation, Presentation, Interpretation, 1993, New York: Routledge, 352

[67]

Rudnick R L, Gao S. Holland H D, Turekian K K. Composition of the Continental Crust. Treatise Geochem. 3, 2003, Oxford: Elsevier, 1-64

[68]

Sheth H C, Torres-Alvarado I S, Verma S P. What is the “Calc-Alkaline Rock Series”?. International Geology Review, 2002, 44(8): 686-701.

[69]

Stampfli G M, Borel G D. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 2002, 196(1): 17-33. 2

[70]

Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[71]

Temel A, Gündoğdu M N, Gourgaud A. Petrological and Geochemical Characteristics of Cenozoic High-K Calc-Alkaline Volcanism in Konya, Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 1998, 85(1): 327-354. 2/3/4

[72]

Temizel İ, Arslan M, Ruffet G, . Petrochemistry, Geochronology and Sr-Nd Isotopic Systematics of the Tertiary Collisional and Post-Collisional Volcanic Rocks from the Ulubey (Ordu) Area, Eastern Pontide, NE Turkey: Implications for Extension-Related Origin and Mantle Source Characteristics. Lithos, 2012, 128–131: 126-147.

[73]

Verdel C, Wernicke B P, Hassanzadeh J, . A Paleogene Extensional Arc Flare-up in Iran. Tectonics, 2011, 30(3): TC3008

[74]

Wang Z H, Zhao Y, Zou H B, . Petrogenesis of the Early Jurassic Nandaling Flood Basalts in the Yanshan Belt, North China Craton: A Correlation between Magmatic Underplating and Lithospheric Thinning. Lithos, 2007, 96 3 543-566. 4

[75]

Wang Q, Wyman D A, Xu J F, . Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 2008, 155(4): 473-490.

[76]

Wallace G S, Bergantz G W. Wavelet-Based Correlation (WBC) of Zoned Crystal Populations and Magma Mixing. Earth and Planetary Science Letters, 2002, 202(1): 133-145.

[77]

Wedepohl K H. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232.

[78]

Whalen J B, Currie K L, Chappell B W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.

[79]

Whitney D L, Evans B W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.

[80]

Winchester J A, Floyd P A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 1977, 20: 325-343.

[81]

Wood D A, Joron J L, Treuil M. A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 1979, 45(2): 326-336.

[82]

Xu J F, Shinjo R, Defant M J, . Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 2002, 30(12): 1111-1114.

[83]

Yousefi F. Petrogenesis and Isotope Geology of Post Eocene Intrusive Rocks of Torud-Ahmad Abad Magmatic Belt (SE of Shahrood), 2017, Shahrood: Shahrood University of Technology, 247 (in Persian with English Abstract)

[84]

Yousefi F, Sadeghian M, Wanhainen C, . Geochemistry, Petrogenesis and Tectonic Setting of Middle Eocene Hypabyssal Rocks of the Torud-Ahmad Abad Magmatic Belt: An Implication for Evolution of the Northern Branch of Neo-Tethys Ocean in Iran. Journal of Geochemical Exploration, 2017, 178: 1-15.

[85]

Yousefi F, Sadeghian M, Wanhainen C, . Mineral Chemistry and P-T Conditions of the Adakitic Rocks from Torud-Ahmad Abad Magmatic Belt, S-SE Shahrood, NE Iran. Journal of Geochemical Exploration, 2017, 182: 110-120.

[86]

Yumul G P Jr., Brown W W, Dimalanta C B, . Adakitic Rocks in the Masara Gold-Silver Mine, Compostela Valley, Mindanao, Philippines: Different Places, Varying Mechanisms?. Journal of Asian Earth Sciences, 2017, 142: 45-55.

[87]

Zhang X R, Zhao G C, Eizenhöfer P R, . Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 2016, 256: 269-281. 257

[88]

Zheng Y F. Subduction Zone Geochemistry. Geoscience Frontiers, 2019, 10(4): 1223-1254.

[89]

Zhu D C, Zhao Z D, Pan G T, . Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction?. Journal of Asian Earth Sciences, 2009, 34(3): 298-309.

[90]

Zindler A, Hart S. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 1986, 14(1): 493-571.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/