Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data
Shi Li , Jianping Chen , Chang Liu , Yang Wang
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (2) : 327 -347.
Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data
Today’s era of big data is witnessing a gradual increase in the amount of data, more correlations between data, as well as growth in their spatial dimension. Conventional linear statistical models applied to mineral prospectivity mapping (MPM) perform poorly because of the random and nonlinear nature of metallogenic processes. To overcome this performance degradation, deep learning models have been introduced in 3D MPM. In this study, taking the Huayuan sedimentary Mn deposit in Hunan Province as an example, we construct a 3D digital model of this deposit based on the prospectivity model of the study area. In this approach, 3D predictor layers are converted from the conceptual model and employed in a 3D convolutional neural network (3D CNN). The characteristics of the spatial distribution are extracted by the 3D CNN. Subsequently, we divide the 22 extracted ore-controlling variables into six groups for contrast experiments based on various combinations and further apply the 3D CNN model and weight of evidence (WofE) method on each group. The predictive model is trained on the basis of the coupling correlation between the spatial distributions of the variables and the underground occurrence space of the Mn orebodies, and the correlation between different ore-controlling factors. The analysis of 12 factors indicates that the 3D CNN model performs well in the 3D MPM, achieving a promising accuracy of up to 100% and a loss value below 0.001. A comparison shows that the 3D CNN model outperforms the WofE model in terms of predictive evaluation indexes, namely the success rate and ore-controlling rate. In particular, the 1–12 ore-controlling factors selected in experiment 5 provide a significantly better prediction effect than the other factors. Consequently, we conclude that the Mn deposit in the study area is not only related to the stratum and interlaminar anomalous bodies but also to the spatial distribution of the faults. The experimental results confirm that the proposed 3D CNN is promising for 3D MPM as it eliminates the interference factors.
big data / mineral prospectivity mapping / 3D geological modeling / 3D CNN / Huayuan Mn deposit
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Bilgili, E., Nucan, O., Albora, A. M., et al., 2002. Potential Anomaly Separation Using Genetically Trained Multi-Level Cellular Neural Networks, In: Proc. 7th IEEE International Workshop on Cellular Neural Networks and Their Applications, Frankfurt. 391–398 |
| [5] |
Bristol, R. S., Euliss Jr, N. H., Booth, N. L., et al., 2012. Science Strategy for Core Science Systems in the U.S. Geological Survey, 2013–2023: Public Review Release, U. S. Geological Survey, Reston. 29 |
| [6] |
Brown, K., Dormer, J., Fei, B., et al., 2019. March. Deep 3D Convolutional Neural Networks for Fast Super-Resolution Ultrasound Imaging, In Proc. SPIE 10955, Medical Imaging 2019: Ultrasonic Imaging and Tomography, San Diego, CA, 1095502 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Chen, H., Qi, X., Yu, L., et al., 2016. DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation, In Proc. 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas. 2487–2496 |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Ciresan, D., Giusti, A., Gambardella, L. M., et al., 2012. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images, In: Proc. 25th International Conference on Neural Information Processing Systems, Lake Tahoe. 2843–2851 |
| [22] |
|
| [23] |
|
| [24] |
Dizaji, M. S., Harris, D. K., 2019. 3D InspectionNet: A Deep 3D Convolutional Neural Networks Based Approach for 3D Defect Detection on Concrete Columns, In Proc. SPIE 10971, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII, Denver. 109710E |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Jiang, S. Y., Chen, Y. M., 2017. Hand Gesture Recognition by Using 3DCNN and LSTM with Adam Optimizer, In Proc. 18th Pacific-Rim Conference on Multimedia, Harbin. 743–753 |
| [32] |
|
| [33] |
Karasawa, H., Liu, C. L., Ohwada, H., 2018. Deep 3D Convolutional Neural Network Architectures for Alzheimer’s Disease Diagnosis, In Proc. 10th Asian Conference on Intelligent Information and Database Systems, Dong Hoi City. 287–296 |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
Li, Y. L., Yan, Y. Q., Wu, Y. F., et al., 2020. Supermarket Security System Based on 3D CNN (Patent No. 109544837A), http://www.soopat.com/Patent/201811328968, 2019 (Accessed 8 May 2020) (in Chinese) |
| [43] |
|
| [44] |
Liao, J. G., Wang, S. L., Zhang, X. X., et al., 2018. 3D Convolutional Neural Networks Based Speaker Identification and Authentication, In: Proc. 25th IEEE International Conference on Image Processing, Athens. 2042–2046 |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
Lohr, S., 2012. The Age of Big Data. The New York Times, 2012, February 11. https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html (accessed 10 May 2020) |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
Martens, J., Sutskever, I., 2011. Learning Recurrent Neural Networks with Hessian-Free Optimization, In: Proc. 28th International Conference on Machine Learning, Bellevue. 1033–1040 |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
Qi, H. F., Li, J., Wu, Q., et al., 2018. A 3D-CNN Based Video Hashing Method, In: Proc. SPIE 10806, Tenth International Conference on Digital Image Processing, Shanghai. 1080644 |
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
Sainath, T. N., Kingsbury, B., Ramabhadran, B., 2012. Auto-Encoder Bottleneck Features Using Deep Belief Networks, In: Proc. 38th IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto. 4153–4156 |
| [66] |
|
| [67] |
Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. https://arxiv.org/abs/1409.1556 (accessed 11 May 2020) |
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
Wang, X., Xie, W. X., Song, J. Y., 2018. Learning Spatiotemporal Features with 3DCNN and ConvGRU for Video Anomaly Detection, In: Proc. 14th IEEE International Conference on Signal Processing, Beijing. 474–479 |
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
/
| 〈 |
|
〉 |