Evolutionary Process from Mockina bidentata to Parvigondolella andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy

Yixing Du , Tetsuji Onoue , Viktor Karádi , Ian S. Williams , Manuel Rigo

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (3) : 667 -676.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (3) : 667 -676. DOI: 10.1007/s12583-020-1362-2
Article

Evolutionary Process from Mockina bidentata to Parvigondolella andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy

Author information +
History +
PDF

Abstract

During their last phase of evolution, the pectiniform conodont elements manifested an evident trend of simplification and miniaturization. This phase started from the late Norian (Sevatian) in the Late Triassic and the evolutionary process of genus Mockina to Parvigondolella, in particular between Mockina bidentata and Parvigondolella andrusovi, is one of the most significant examples. Parvigondolella has been reported worldwide since it was first described in the early 1970s. However, it has recently been suggested that genus Parvigondolella is an ecostratigraphic morphotype of genus Mockina, and thus a phenotype controlled by the environmental conditions, and not an independent taxon. In the Pizzo Mondello Section (Sicily, Italy), transitional forms between M. bidentata and P. andrusovi have been found at different evolutionary stages. We have investigated the oceanic conditions at the time by using redox-sensitive elements (Mn, Fe, V, Cr, and Ni) and seawater temperatures from biogenetic δ18Ophos to understand the possible environmental influences on the phylogenetic evolution between Mockina and Parvigondolella. The geochemical and isotope analyses indicate that the redox condition and temperature were stable during the evolution of genus Parvigondolella in Pizzo Mondello, confirming that genus Parvigondolella is a real taxon and not a phenotype. A new conodont species named Parvigondolella ciarapicae n. sp. is described here for the first time.

Keywords

conodont / Late Triassic / evolution / oxygen isotope / geochemistry

Cite this article

Download citation ▾
Yixing Du, Tetsuji Onoue, Viktor Karádi, Ian S. Williams, Manuel Rigo. Evolutionary Process from Mockina bidentata to Parvigondolella andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy. Journal of Earth Science, 2021, 32(3): 667-676 DOI:10.1007/s12583-020-1362-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balini M, Bertinelli A, Di Stefano P, . The Late Carnian- Rhaetian Succession at Pizzo Mondello (Sicani Mountains). Albertiana, 2010, 39: 36-57.

[2]

Bazzucchi P, Bertinelli A, Ciarapica G, . The Late Triassic-Jurassic Stratigraphic Succession of Pignola (Lagonegro-Molise Basin, Southern Apennines, Italy). Bollettino della Società Geologica Italiana, 2005, 124: 143-153.

[3]

Bellanca A, Di Stefano P, Neri R. Sedimentology and Isotope Geochemistry of Carnian Deep-Water Marl/Limestone Deposits from the Sicani Mountains, Sicily: Environmental Implications and Evidence for a Planktonic Source of Lime Mud. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 114(1): 111-129.

[4]

Bertinelli A, Ciarapica G, Zanche V D, . Stratigraphic Evolution of the Triassic-Jurassic Sasso di Castalda Succession (Lagonegro Basin, Southern Apennines, Italy). Italian Journal of Geosciences, 2005, 124(1): 161-175

[5]

Bertinelli A, Casacci M, Concheri G, . The Norian/Rhaetian Boundary Interval at Pignola-Abriola Section (Southern Apennines, Italy) as a GSSP Candidate for the Rhaetian Stage: An Update. Albertiana, 2016, 43: 5-18.

[6]

Bragin N. Radiolarians and Lower Mesozoic Deposits in the Eastern USSR, 1991, Moscow: Nauka, 125

[7]

Calvert S E, Pedersen T F. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 1993, 113(1): 67-88. 2

[8]

Calvert S E, Pedersen T F. Hillaire-Marcel C, Vernal A D. Chapter Fourteen Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application. Developments in Marine Geology, Vol. 1, 2007, Amsterdam: Elsevier, 567-644

[9]

Carter E S, Orchard M J. Radiolarian-Conodont-Ammonoid Intercalibration around the Norian-Rhaetian Boundary and Implications for Trans-Panthalassan Correlation. Albertiana, 2007, 36: 149-163.

[10]

Channell J E T, Kozur H W, Sievers T, . Carnian-Norian Biomagnetostratigraphy at Silická Brezová (Slovakia): Correlation to Other Tethyan Sections and to the Newark Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 191(2): 65-109.

[11]

Clarkson M O, Poulton S W, Guilbaud R, . Assessing the Utility of Fe/Al and Fe-Speciation to Record Water Column Redox Conditions in Carbonate-Rich Sediments. Chemical Geology, 2014, 382: 111-122.

[12]

Donoghue P C J, Forey P L, Aldridge R J. Conodont Affinity and Chordate Phylogeny. Biological Reviews, 2000, 75(2): 191-251.

[13]

Du Y X, Chiari M, Karádi V, . The Asynchronous Disappearance of Conodonts: New Constraints from Triassic-Jurassic Boundary Sections in the Tethys and Panthalassa. Earth-Science Reviews, 2020, 203: 103176

[14]

Du Y X, Bertinelli A, Jin X, . Integrated Conodont and Radiolarian Biostratigraphy of the Upper Norian in Baoshan Block, Southwestern China. Lethaia, 2020, 53(4): 533-545.

[15]

Gale L, Kolar-Jurkovšek T, Šmuc A, . Integrated Rhaetian Foraminiferal and Conodont Biostratigraphy from the Slovenian Basin, Eastern Southern Alps. Swiss Journal of Geosciences, 2012, 105(3): 435-462.

[16]

Gallet Y, Krystyn L, Marcoux J, . New Constraints on the End-Triassic (Upper Norian-Rhaetian) Magnetostratigraphy. Earth and Planetary Science Letters, 2007, 255(3): 458-470. 4

[17]

Giordano N, Ciarapica G, Bertinelli A, . The Norian-Rhaetian Interval in Two Sections of the Lagonegro Area: The Transition from Carbonate to Siliceous Deposition. Italian Journal of Geosciences, 2011, 130 380-393.

[18]

Giordano N, Rigo M, Ciarapica G, . New Biostratigraphical Constraints for the Norian/Rhaetian Boundary: Data from Lagonegro Basin, Southern Apennines, Italy. Lethaia, 2010, 43(4): 573-586.

[19]

Guaiumi C, Nicora A, Preto N, . New Biostratigraphic Data around the Carnian/Norian Boundary from the Pizzo Mondello Section, Sicani Mountains, Sicily. New Mexico Museum of Natural History and Science Bulletin, 2007, 41: 40-42.

[20]

Guex J. Reinitialization of Evolutionary Clocks during Sublethal Environmental Stress in some Invertebrates. Earth and Planetary Science Letters, 2006, 242(3): 240-253. 4

[21]

Guex J, O’Dogherty L, Carter E S, . Geometrical Transformations of Selected Mesozoic Radiolarians. Geobios, 2012, 45(6): 541-554.

[22]

Gullo M. Conodont Biostratigraphy of Uppermost Triassic Deep-Water Calcilutites from Pizzo Mondello (Sicani Mountains): Evidence for Rhaetian Pelagites in Sicily. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 126(3): 309-323. 4

[23]

Hatch J R, Leventhal J S. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 1992, 99(1): 65-82. 2/3

[24]

Johnston D T, Poulton S W, Goldberg T, . Late Ediacaran Redox Stability and Metazoan Evolution. Earth and Planetary Science Letters, 2012, 335: 25-35. 336

[25]

Jones B, Manning D A C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 1994, 111(1): 111-129. 2/3/4

[26]

Karádi V, Cau A, Mazza M, . The Last Phase of Conodont Evolution during the Late Triassic: Integrating Biostratigraphic and Phylogenetic Approaches. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549: 109144

[27]

Kozur H. The Taxonomy of the Gondolellid Conodonts in the Permian and Triassic. Courier Forschungsinstitut Senckenberg, 1989, 117 409-469.

[28]

Kozur H, Mock R. Neue Conodonten aus der Trias der Slowakei und ihre Stratigraphische Bedeutung. Geologisch-Paläontologische Mitteilungen Innsbruck, 1972, 2(4): 1-20

[29]

Kozur H, Mock R. New Middle Carnian and Rhaetian Conodonts from Hungary and the Alps, Stratigraphic Importance and Tectonic Implications for the Buda Mountains and Adjacent Areas. Jahrbuch der Geologischen Bundesanstalt, 1991, 134: 271-297.

[30]

Kozur H, Mostler H. Probleme der Conodontenforschung in der Trias. Geologische-Palaontologische Mitteilungen Innsbruck, 1971, 1(4): 1-19

[31]

Krystyn, L., Bouquerel, H., Kuerschner, W., et al., 2007a. Proposal for a Candidate GSSP for the Base of the Rhaetian Stage. In: Lucas, S. G., Spielmann, J. A., eds., The Global Triassic. New Mexico Museum of Natural History and Science Bulletin, 41: 189–199

[32]

Krystyn L, Richoz S, Gallet Y, . Updated Bio- and Magnetostratigraphy from Steinbergkogel (Austria), Candidate GSSP for the Base of the Rhaetian Stage. Albertiana, 2007, 36: 164-173.

[33]

Kunihiro S, Saito H, Sakagami S. Discovery of Triassic Conodonts from “Kurohae Chert” in the Choshi Peninsula. Journal of Geography (Chigaku Zasshi), 1984, 93(5): 341-343.

[34]

Lyons T W, Werne J P, Hollander D J, . Contrasting Sulfur Geochemistry and Fe/Al and Mo/Al Ratios across the Last Oxic-to-Anoxic Transition in the Cariaco Basin, Venezuela. Chemical Geology, 2003, 195(1): 131-157. 2/3/4

[35]

Mazza M, Furin S, Spötl C, . Generic Turnovers of Carnian/Norian Conodonts: Climatic Control or Competition?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1): 120-137. 2/3/4

[36]

Mazza M, Martínez-Pérez C. Unravelling Conodont (Conodonta) Ontogenetic Processes in the Late Triassic through Growth Series Reconstructions and X-Ray Microtomography. Bollettino della Società Paleontologica Italiana, 2015, 54(3): 161-186

[37]

Mazza M, Nicora A, Rigo M. Metapolygnathus parvus Kozur, 1972 (Conodonta): A Potential Primary Marker for the Norian GSSP (Upper Triassic). Bollettino della Società Paleontologica Italiana, 2018, 57(2): 81-101

[38]

Mazza M, Rigo M, Gullo M. Taxonomy and Stratigraphic Record of the Upper Triassic Conodonts of the Pizzo Mondello Section (Western Sicily, Italy), GSSP Candidate for the Base of the Norian. Rivista Italiana di Paleontologia e Stratigrafia, 2012, 118: 85-130.

[39]

Mazza M, Cau A, Rigo M. Application of Numerical Cladistic Analyses to the Carnian-Norian Conodonts: A New Approach for Phylogenetic Interpretations. Journal of Systematic Palaeontology, 2012, 10(3): 401-422.

[40]

Mazza M, Rigo M, Nicora A, . A New Metapolygnathus Platform Conodont Species and Its Implications for Upper Carnian Global Correlations. Acta Palaeontologica Polonica, 2011, 56(1): 121-131.

[41]

Mietto P, Manfrin S, Preto N, . The Global Boundary Stratotype Section and Point (GSSP) of the Carnian Stage (Late Triassic) at Prati di Stuores/Stuores Wiesen Section (Southern Alps, NE Italy). Episodes, 2012, 35(3): 414-430.

[42]

Moix, P., Kozur, H. W., Stampfli, G. M., et al., 2007. New Paleontological, Biostratigraphic and Paleogeographic Results from the Triassic of the Mersin Mélange, SE Turkey. In: Lucas, S. G., Spielmann, J. A., eds., The Global Triassic. New Mexico Museum of Natural History and Science Bullettin, 41: 282–311

[43]

Muttoni G, Kent D V, Di Stefano P, . Magnetostratigraphy and Biostratigraphy of the Carnian/Norian Boundary Interval from the Pizzo Mondello Section (Sicani Mountains, Sicily). Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 166: 383-399.

[44]

Muttoni G, Kent D V, Olsen P E, . Tethyan Magnetostratigraphy from Pizzo Mondello (Sicily) and Correlation to the Late Triassic Newark Astrochronological Polarity Time Scale. Geological Society of America Bulletin, 2004, 116(9): 1043-1058. 10

[45]

Nicora A, Balini M, Bellanca A, . The Carnian/Norian Boundary Interval at Pizzo Mondello (Sicani Mountains, Sicily) and Its Bearing for the Definition of the GSSP of the Norian Stage. Albertiana, 2007, 36: 102-129.

[46]

Onoue T, Yamashita K, Fukuda C, . Sr Isotope Variations in the Upper Triassic Succession at Pizzo Mondello, Sicily: Constraints on the Timing of the Cimmerian Orogeny. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 499: 131-137.

[47]

Onoue T, Zonneveld J P, Orchard M J, . Paleoenvironmental Changes across the Carnian/Norian Boundary in the Black Bear Ridge Section, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 721-733.

[48]

Orchard M J. Epigondolella Populations and Their Phylogeny and Zonation in the Upper Triassic. Fossils and Strata, 1983, 15: 177-192.

[49]

Orchard, M. J., 2018. The Lower-Middle Norian (Upper Triassic) Boundary: New Conodont Taxa and a Refined Biozonation. In: Over, D. J., Henderson, C. M., eds., Conodont Studies Dedicated to the Careers and Contributions of Anita Harris, Glen Merrill, Carl Rexroad, Walter Sweet, and Bruce Wardlaw. Bulletins of American Paleontology, 395/396: 165–193. https://doi.org/10.32857/bap.2018.395.12

[50]

Orchard M J, Carter E S, Lucas S G, . Rhaetian (Upper Triassic) Conodonts and Radiolarians. Albertiana, 2007, 35: 59-65.

[51]

Orchard, M. J., Whalen, P. A., Carter, E. S., et al., 2007b. Latest Triassic Conodonts and Radiolarian-Bearing Successions in Baja California Sur. In: Lucas, S. G., Spielmann, J. A., eds., The Global Triassic. New Mexico Museum of Natural History and Science Bulletin, 41: 355–365

[52]

Pálfy J, Demény A, Haas J, . Triassic-Jurassic Boundary Events Inferred from Integrated Stratigraphy of the Csővár Section, Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1): 11-33. 2/3/4

[53]

Preto N, Agnini C, Rigo M, . The Calcareous Nannofossil Prinsiosphaera Achieved Rock-Forming Abundances in the Latest Triassic of Western Tethys: Consequences for the δ13C of Bulk Carbonate. Biogeosciences Discussions, 2013, 10(5): 7989-8025

[54]

Preto N, Rigo M, Agnini C, . Triassic and Jurassic Calcareous Nannofossils of the Pizzo Mondello Section: A SEM Study. Rivista Italiana di Paleontologia e Stratigrafia, 2012, 118(1): 133-141

[55]

Reggiani L, Bertinelli A, Ciarapica G, . Triassic-Jurassic Stratigraphy of the Madonna del Sirino Succession (Lagonegro Basin, Southern Apennines, Italy). Bollettino Della Società Geologica Italiana, 2005, 124: 281-291. (Suppl.)

[56]

Rigo M, Bertinelli A, Concheri G, . The Pignola-Abriola Section (Southern Apennines, Italy): A New GSSP Candidate for the Base of the Rhaetian Stage. Lethaia, 2016, 49(3): 287-306.

[57]

Rigo M, De Zanche V, Mietto P, . Correlation of Upper Triassic Sections throughout the Lagonegro Basin. Bollettino della Societa Geologica Italiana, 2005, 124: 293-300.

[58]

Rigo M, Joachimski M M. Palaeoecology of Late Triassic Conodonts: Constraints from Oxygen Isotopes in Biogenic Apatite. Acta Palaeontologica Polonica, 2010, 55(3): 471-478.

[59]

Rigo M, Mazza M, Karádi V, . Tanner L H, . New Upper Triassic Conodont Biozonation of the Tethyan Realm. The Late Triassic World. Topics in Geobiology 46, 2018, Cham: Springer, 189-235.

[60]

Rigo M, Onoue T, Tanner L H, . The Late Triassic Extinction at the Norian/Rhaetian Boundary: Biotic Evidence and Geochemical Signature. Earth-Science Reviews, 2020, 204: 103180

[61]

Rigo M, Preto N, Roghi G, . A Rise in the Carbonate Compensation Depth of Western Tethys in the Carnian (Late Triassic): Deep-Water Evidence for the Carnian Pluvial Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246 188-205.

[62]

Rigo M, Trotter J A, Preto N, . Oxygen Isotopic Evidence for Late Triassic Monsoonal Upwelling in the Northwestern Tethys. Geology, 2012, 40(6): 515-518.

[63]

Rimmer S M. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 2004, 206(3): 373-391. 4

[64]

Rudnick R L, Gao S. Holland H D, Turekian K K. Composition of the Continental Crust. Treatise on Geochemistry, 2014, Amsterdam: Elsevier Sci. 4, 1-51

[65]

Sansom I, Smith M, Armstrong H, . Presence of the Earliest Vertebrate Hard Tissue in Conodonts. Science, 1992, 256(5061): 1308-1311.

[66]

Schovsbo N H. Why Barren Intervals? A Taphonomic Case Study of the Scandinavian Alum Shale and Its Faunas. Lethaia, 2001, 34(4): 271-285.

[67]

Sholkovitz E R, Landing W M, Lewis B L. Ocean Particle Chemistry: The Fractionation of Rare Earth Elements between Suspended Particles and Seawater. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579.

[68]

Soda K, Onoue T. Multivariate Analysis of Geochemical Compositions of Bedded Chert during the Middle Triassic (Anisian) Oceanic Anoxic Events in the Panthalassic Ocean. Geochemical Journal, 2019, 53(2): 91-102.

[69]

Trotter J A, Williams I S, Barnes C R, . Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 2008, 321(5888): 550-554.

[70]

Trotter J A, Williams I S, Nicora A, . Long-Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 2015, 415: 165-174.

[71]

Wignall P B, Zonneveld J P, Newton R J, . The End Triassic Mass Extinction Record of Williston Lake, British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(3): 385-406. 4

[72]

Zhang L, Orchard M J, Algeo T J, . An Intercalibrated Triassic Conodont Succession and Carbonate Carbon Isotope Profile, Kamura, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519: 65-83.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/