Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile

Sha Wang, Jinhua Zhang, Joseph R. Smyth, Junfeng Zhang, Dan Liu, Xi Zhu, Xiang Wang, Yu Ye

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (6) : 1190-1199.

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (6) : 1190-1199. DOI: 10.1007/s12583-020-1351-5
Article

Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile

Author information +
History +

Abstract

A natural rutle sample was measured by in situ high-temperature X-ray diffraction (XRD) patterns, as well as Raman and Fourier transform infrared (FTIR). Crystal structure is refined on the sample with 1.4 mol.% Fe and 510±120 ppmw. H2O. The unit-cell and TiO6 octahedral volumes are expanded by 0.7%–0.8% for Fe3+ incorporation, as compared with the reported Ti-pure samples. The volumetric thermal expansion coefficient (α, K−1) could be approximated as a linear function of T (K): 4.95(3)×10−9×T+21.54(5)×10−6, with the averaged value α 0=30.48(5)×10−6 K−1, in the temperature range of 300–1500 K. The internal Ti-O stretching (A 1g and B 2g) and O-Ti-O bending (E g) modes show ‘red shift’, whereas the multi-phonon process exhibits ‘blue shift’ at elevated temperature. The rotational mode (B 1g) for TiO6 octahedra is nearly insensitive to temperature variations. The OH-stretching bands at 3 279 and 3 297 cm−1 are measured by high-temperature spectroscopy experiments. Both the IR-active and Raman-active OH-stretching modes shift to lower frequencies at higher temperature, with the signal intensities decreasing. And after quenching, we expect about 43% dehydration around 873 K, and 85% dehydration at 1 273 K for this hydrous sample.

Keywords

rutile / crystal structure / thermal expansivity / high-temperature Raman / high-temperature FTIR / OH-stretching mode

Cite this article

Download citation ▾
Sha Wang, Jinhua Zhang, Joseph R. Smyth, Junfeng Zhang, Dan Liu, Xi Zhu, Xiang Wang, Yu Ye. Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile. Journal of Earth Science, 2020, 31(6): 1190‒1199 https://doi.org/10.1007/s12583-020-1351-5

References

Arlt T, Bermejo M, Blanco M A, . High-Pressure Polymorphs of Anatase TiO2. Physical Review B, 2000, 61(21): 14414-14419
Balachandran U, Eror N G. Raman Spectra of Titanium Dioxide. Journal of Solid State Chemistry, 1982, 42(3): 276-282
Bromiley G D, Hilairet N. Hydrogen and Minor Element Incorporation in Synthetic Rutile. Mineralogical Magazine, 2005, 69(3): 345-358
Bromiley G D, Shiryaev A A. Neutron Irradiation and Post-Irradiation Annealing of Rutile (TiO2−x): Effect on Hydrogen Incorporation and Optical Absorption. Physics and Chemistry of Minerals, 2006, 33(6): 426-434
Bromiley G D, Hilairet N, Mccammon C. Solubility of Hydrogen and Ferric Iron in Rutile and TiO2 (II): Implications for Phase Assemblages during Ultrahigh-Pressure Metamorphism and for the Stability of Silica Polymorphs in the Lower Mantle. Geophysical Research Letters, 2004, 31(4): L04610
Cao Y T, Liu L, Yang W Q, . Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China: Constraints from Titanite U-Pb Dating and Mineral Chemistry. Journal of Earth Science, 2019, 30 6 1166-1177
Cromer D T, Mann J B. X-Ray Scattering Factors Computed from Numerical Hartree-Fock Wave Functions. Acta Crystallographica Section A, 1968, 24(2): 321-324
Deer W A, Howie R A, Zussman J. An Introduction to the Rock-Forming Minerals. Journal of Geology, 1963, 71: 534-536.
Dolomanov O V, Blake A J, Champness N R, . OLEX: New Software for Visualization and Analysis of Extended Crystal Structures. Journal of Applied Crystallography, 2003, 36(5): 1283-1284
Downs R T, Bartelmehs K L, Gibbs G V, . Interactive Software for Calculating and Displaying X-Ray or Neutron Powder Diffractometer Patterns of Crystalline Materials. American Mineralogist, 1993, 78: 1104-1107.
Fei Y. Ahrens J T. Thermal Expansion. Mineral Physics and Crystallography, 1995, Washington: American Geophysical Union, 29-44
Foley S F, Barth M G, Jenner G A. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 2000, 64(5): 933-938
Guo H H. In-situ Infrared Spectra of OH in Rutile up to 1 000 °C. Physics and Chemistry of Minerals, 2017, 44(8): 547-552
Hammer V M F, Beran A. Variations in the OH Concentration of Rutiles from Different Geological Environments. Mineralogy and Petrology, 1991, 45(1): 1-9
Hara Y, Nicol M. Raman Spectra and the Structure of Rutile at High Pressures. Physica Status Solidi B, 1979, 94(1): 317-322
Hazen R M, Finger L W. Bulk Moduli and High-Pressure Crystal Structures of Rutile-Type Compounds. Journal of Physics and Chemistry of Solids, 1981, 42(3): 143-151
Hemley R J, Mao H K, Chao E C T. Raman Spectrum of Natural and Synthetic Stishovite. Physics and Chemistry of Minerals, 1986, 13(5): 285-290
Henderson C M B, Knight K S, Lennie A R. Temperature Dependence of Rutile (TiO2) and Geikielite (MgTiO3) Structures Determined Using Neutron Powder Diffraction. The Open Mineralogy Journal, 2009, 3(1): 1-11
Holland T J B, Redfern S A T. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Mineralogical Magazine, 1997, 61(404): 65-77
Howard C J, Sabine T M, Dickson F. Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallographica Section B Structural Science, 1991, 47(4): 462-468
Hummer D R, Heaney P J, Post J E. Thermal Expansion of Anatase and Rutile between 300 and 575 K Using Synchrotron Powder X-Ray Diffraction. Powder Diffraction, 2007, 22: 352-357.
Isaak D G, Carnes J D, Anderson O L, . Elasticity of TiO2 Rutile to 1 800 K. Physics and Chemistry of Minerals, 1998, 26(1): 31-43
Johnson O W, Ohlsen W D, Kingsbury P I. Defects in Rutile III. Optical and Electronic Properties of Impurities and Charge Carriers. Physical Review, 1968, 175: 1102-1109.
Johnson O W, DeFord J, Shaner J W. Experimental Technique for the Precise Determination of H and D Concentration in Rutile (TiO2). Journal of Applied Physics, 1973, 44(7): 3008-3012
Klemme S, Blundy J D, Wood B J. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite. Geochimica et Cosmochimica Acta, 2002, 66(17): 3109-3123
Koudriachova M V, de Leeuw S W, Harrison N M. First-Principles Study of H Intercalation in Rutile TiO2. Physical Review B, 2004, 70(16): 165421
Kumar M. High Pressure Equation of State for Solids. Physica B: Condensed Matter, 1995, 212 4 391-394
Kumar M. Application of High Pressure Equation of State for Different Classes of Solids. Physica B: Condensed Matter, 1996, 217(1/2): 143-148
Kumar M. Thermoelastic Properties of Minerals. Physics and Chemistry of Minerals, 2003, 30: 556-558.
Lan T, Tang X L, Fultz B. Phonon Anharmonicity of Rutile TiO2 Studied by Raman Spectrometry and Molecular Dynamics Simulations. Physical Review B, 2012, 85(9): 094305
Li K Y, Xue D F. Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 2006, 110 39 11332-11337
Libowitzky E. Correlation of O-H Stretching Frequencies and O-H… O Hydrogen Bond Lengths in Minerals. Monatshefte für Chemie, 1999, 130(8): 1047-1059
Litasov K D, Kagi H, Shatskiy A, . High Hydrogen Solubility in Al-Rich Stishovite and Water Transport in the Lower Mantle. Earth and Planetary Science Letters, 2007, 262(3/4): 620-634
Lucassen F, Koch-Muller M, Taran M, . Coupled H and Nb, Cr, and V Trace Element Behavior in Synthetic Rutile at 600 °C, 400 MPa and Possible Geological Application. American Mineralogist, 2012, 98(1): 7-18
Maldener J, Rauch F, Gavranic M, . OH Absorption Coefficients of Rutile and Cassiterite Deduced from Nuclear Reaction Analysis and FTIR Spectroscopy. Mineralogy and Petrology, 2001, 71(1/2): 21-29
Mammone J F, Sharma S K, Nicol M. Raman Study of Rutile (TiO2) at High Pressures. Solid State Communications, 1980, 34(10): 799-802
Meagher E P, Lager G A. Polyhedral Thermal Expansion in the TiO2 Polymorphs: Refinement of the Crystal Structure of Rutile and Brookite at High Temperature. The Canadian Mineralogist, 1979, 17: 77-85.
Miao Y F, Pang Y W, Ye Y, . Crystal Structures and High-Temperature Vibrational Spectra for Synthetic Boron and Aluminum Doped Hydrous Coesite. Crystals, 2019, 9(12): 642
Ming L C, Manghnani M H. Isothermal Compression of TiO2 (Rutile) under Hydrostatic Pressure to 106 kbar. Journal of Geophysical Research, 1979, 84 B9 4777-4779
Mookherjee M, Redfern S A T, Zhang M. Thermal Response of Structure and Hydroxyl Ion of Phengite-2M1: An in situ Neutron Diffraction and FTIR Study. European Journal of Mineralogy, 2001, 13(3): 545-555
Nie J Z, Liu Y C, Yang Y. Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton. Journal of Earth Science, 2018, 29(5): 1236-1253
Pawley A R, McMillan P F, Holloway J R. Hydrogen in Stishovite, with Implications for Mantle Water Content. Science, 1993, 261(5124): 1024-1026
Porto S P S, Fleury P A, Damen T C. Raman Spectra of TiO2, MgF2, ZnF2, FeF2 and MnF2. Physical Review, 1967, 154(2): 522-526
Rao K V K, Naidu S V N, Iyengar L. Thermal Expansion of Rutile and Anatase. Journal of the American Ceramic Society, 1970, 53(3): 124-126
Rossman G R, Smyth J R. Hydroxyl Content of Accessory Minerals in Mantle Eclogites and Related Rocks. American Mineralogist, 1990, 75: 775-780.
Samara G A, Peercy P S. Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2 (Rutile). Physical Review B, 1973, 7(3): 1131-1148
Sato, Y., 1977. Equation of State of Mantle Minerals Determined through High-Pressure X-Day Study. High Pressure Research Applications in Geophysics, (1977): 307–323. https://doi.org/10.1016/b978-0-12-468750-9.50028-0
Saxena S K, Chatterjee N, Fei Y, . Thermodynamic Data on Oxides and Silicates: An Assessed Data Set Based on Thermochemistry and High Pressure Phase Equilibrium, 1993, Berlin, Heidelberg, New York: Springer-Verlag
Sheng Y M, Xia Q K, Hao Y T. Water in Rutiles from UHP Eclogites in the Dabie Orogen. Acta Petrologica et Mineralogica, 2007, 26: 269-274. (in Chinese with English Abstract)
Soffer B H. Studies of the Optical and Infrared Absorption Spectra of Rutile Single Crystals. The Journal of Chemical Physics, 1961, 35(3): 940-945
Song Y R, Jin Z M. Nanometer-Sized UHP Rutile: Tracing the Depth of Continental Deep Subduction. Earth Science Frontiers, 2002, 9: 267-272. (in Chinese with English Abstract)
Su W, Li J L, Mao Q, . Rutile in HP Rocks from the Western Tianshan, China: Mineralogy and Its Economic Implications. Journal of Earth Science, 2018, 29(5): 1049-1059
Sugiyama K, Takéuchi Y. The Crystal Structure of Rutile as a Function of Temperature up to 1 600 °C. Zeitschrift für Kristallographie-Crystalline Materials, 1991, 194(1/2/3/4): 305-313
Suzuki I. Thermal Expansion of Periclase and Olivine, and Their Anharmonic Properties. Journal of Physics of the Earth, 1975, 23(2): 145-159
Suzuki I, Okajima S I, Seya K. Thermal Expansion of Single-Crystal Manganosite. Journal of Physics of the Earth, 1979, 27(1): 63-69
Swope R J, Smyth J R, Larson A C. H in Rutile-Type Compounds: I. Single-Crystal Neutron and X-Ray Diffraction Study of H in Rutile. American Mineralogist, 1995, 80(5/6): 448-453
Tokonami M. Atomic Scattering Factor for O2-. Acta Crystallographica, 1965, 19(3): 486-486
Touloukian Y S, Kirby R K. Thermophysical Properties of Matter; Volume 13: Thermal Expansion; Nonmetallic Solids, 1977, New York, Washington: IFI/Plenum
Vlassopoulos D, Rossman G R, Haggerty S E. Coupled Substitution of High and Minor Elements in Rutile and the Implications of High OH Contents in Nb- and Cr-Rich Rutile from the Upper Mantle. American Mineralogist, 1993, 78: 1181-1191.
Wang X, Xu X X, Ye Y, . In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties. Journal of Earth Science, 2019, 30(5): 964-976
Xie Z J, Liu X W, Jin Z M, . Microstructures and Phase Transition in Omphacite: Constraints on the P-T Path of Shuanghe Eclogite (Dabie Orogen). Journal of Earth Science, 2020, 31(2): 254-261
Xiong X L, Adam J, Green T H. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 2005, 218(3/4): 339-359
Xiong X L, Keppler H, Audétat A, . Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt. Geochimica et Cosmochimica Acta, 2011, 75(7): 1673-1692
Yang Y, Xia Q, Feng M, . In situ FTIR Investigations at Varying Temperatures on Hydrous Components in Rutile. American Mineralogist, 2011, 96(11/12): 1851-1855
Zack T, Kronz A, Foley S F, . Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists. Chemical Geology, 2002, 184(1/2): 97-122
Zaffiro G, Angel R J, Alvaro M. Constraints on the Equations of State of Stiff Anisotropic Minerals: Rutile, and the Implications for Rutile Elastic Barometry. Mineralogical Magazine, 2019, 83(3): 339-347

Accesses

Citations

Detail

Sections
Recommended

/