Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile

Sha Wang , Jinhua Zhang , Joseph R. Smyth , Junfeng Zhang , Dan Liu , Xi Zhu , Xiang Wang , Yu Ye

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (6) : 1190 -1199.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (6) : 1190 -1199. DOI: 10.1007/s12583-020-1351-5
Article

Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile

Author information +
History +
PDF

Abstract

A natural rutle sample was measured by in situ high-temperature X-ray diffraction (XRD) patterns, as well as Raman and Fourier transform infrared (FTIR). Crystal structure is refined on the sample with 1.4 mol.% Fe and 510±120 ppmw. H2O. The unit-cell and TiO6 octahedral volumes are expanded by 0.7%–0.8% for Fe3+ incorporation, as compared with the reported Ti-pure samples. The volumetric thermal expansion coefficient (α, K−1) could be approximated as a linear function of T (K): 4.95(3)×10−9×T+21.54(5)×10−6, with the averaged value α 0=30.48(5)×10−6 K−1, in the temperature range of 300–1500 K. The internal Ti-O stretching (A 1g and B 2g) and O-Ti-O bending (E g) modes show ‘red shift’, whereas the multi-phonon process exhibits ‘blue shift’ at elevated temperature. The rotational mode (B 1g) for TiO6 octahedra is nearly insensitive to temperature variations. The OH-stretching bands at 3 279 and 3 297 cm−1 are measured by high-temperature spectroscopy experiments. Both the IR-active and Raman-active OH-stretching modes shift to lower frequencies at higher temperature, with the signal intensities decreasing. And after quenching, we expect about 43% dehydration around 873 K, and 85% dehydration at 1 273 K for this hydrous sample.

Keywords

rutile / crystal structure / thermal expansivity / high-temperature Raman / high-temperature FTIR / OH-stretching mode

Cite this article

Download citation ▾
Sha Wang, Jinhua Zhang, Joseph R. Smyth, Junfeng Zhang, Dan Liu, Xi Zhu, Xiang Wang, Yu Ye. Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile. Journal of Earth Science, 2020, 31(6): 1190-1199 DOI:10.1007/s12583-020-1351-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arlt T, Bermejo M, Blanco M A, . High-Pressure Polymorphs of Anatase TiO2. Physical Review B, 2000, 61(21): 14414-14419

[2]

Balachandran U, Eror N G. Raman Spectra of Titanium Dioxide. Journal of Solid State Chemistry, 1982, 42(3): 276-282

[3]

Bromiley G D, Hilairet N. Hydrogen and Minor Element Incorporation in Synthetic Rutile. Mineralogical Magazine, 2005, 69(3): 345-358

[4]

Bromiley G D, Shiryaev A A. Neutron Irradiation and Post-Irradiation Annealing of Rutile (TiO2−x): Effect on Hydrogen Incorporation and Optical Absorption. Physics and Chemistry of Minerals, 2006, 33(6): 426-434

[5]

Bromiley G D, Hilairet N, Mccammon C. Solubility of Hydrogen and Ferric Iron in Rutile and TiO2 (II): Implications for Phase Assemblages during Ultrahigh-Pressure Metamorphism and for the Stability of Silica Polymorphs in the Lower Mantle. Geophysical Research Letters, 2004, 31(4): L04610

[6]

Cao Y T, Liu L, Yang W Q, . Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China: Constraints from Titanite U-Pb Dating and Mineral Chemistry. Journal of Earth Science, 2019, 30 6 1166-1177

[7]

Cromer D T, Mann J B. X-Ray Scattering Factors Computed from Numerical Hartree-Fock Wave Functions. Acta Crystallographica Section A, 1968, 24(2): 321-324

[8]

Deer W A, Howie R A, Zussman J. An Introduction to the Rock-Forming Minerals. Journal of Geology, 1963, 71: 534-536.

[9]

Dolomanov O V, Blake A J, Champness N R, . OLEX: New Software for Visualization and Analysis of Extended Crystal Structures. Journal of Applied Crystallography, 2003, 36(5): 1283-1284

[10]

Downs R T, Bartelmehs K L, Gibbs G V, . Interactive Software for Calculating and Displaying X-Ray or Neutron Powder Diffractometer Patterns of Crystalline Materials. American Mineralogist, 1993, 78: 1104-1107.

[11]

Fei Y. Ahrens J T. Thermal Expansion. Mineral Physics and Crystallography, 1995, Washington: American Geophysical Union, 29-44

[12]

Foley S F, Barth M G, Jenner G A. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 2000, 64(5): 933-938

[13]

Guo H H. In-situ Infrared Spectra of OH in Rutile up to 1 000 °C. Physics and Chemistry of Minerals, 2017, 44(8): 547-552

[14]

Hammer V M F, Beran A. Variations in the OH Concentration of Rutiles from Different Geological Environments. Mineralogy and Petrology, 1991, 45(1): 1-9

[15]

Hara Y, Nicol M. Raman Spectra and the Structure of Rutile at High Pressures. Physica Status Solidi B, 1979, 94(1): 317-322

[16]

Hazen R M, Finger L W. Bulk Moduli and High-Pressure Crystal Structures of Rutile-Type Compounds. Journal of Physics and Chemistry of Solids, 1981, 42(3): 143-151

[17]

Hemley R J, Mao H K, Chao E C T. Raman Spectrum of Natural and Synthetic Stishovite. Physics and Chemistry of Minerals, 1986, 13(5): 285-290

[18]

Henderson C M B, Knight K S, Lennie A R. Temperature Dependence of Rutile (TiO2) and Geikielite (MgTiO3) Structures Determined Using Neutron Powder Diffraction. The Open Mineralogy Journal, 2009, 3(1): 1-11

[19]

Holland T J B, Redfern S A T. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Mineralogical Magazine, 1997, 61(404): 65-77

[20]

Howard C J, Sabine T M, Dickson F. Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallographica Section B Structural Science, 1991, 47(4): 462-468

[21]

Hummer D R, Heaney P J, Post J E. Thermal Expansion of Anatase and Rutile between 300 and 575 K Using Synchrotron Powder X-Ray Diffraction. Powder Diffraction, 2007, 22: 352-357.

[22]

Isaak D G, Carnes J D, Anderson O L, . Elasticity of TiO2 Rutile to 1 800 K. Physics and Chemistry of Minerals, 1998, 26(1): 31-43

[23]

Johnson O W, Ohlsen W D, Kingsbury P I. Defects in Rutile III. Optical and Electronic Properties of Impurities and Charge Carriers. Physical Review, 1968, 175: 1102-1109.

[24]

Johnson O W, DeFord J, Shaner J W. Experimental Technique for the Precise Determination of H and D Concentration in Rutile (TiO2). Journal of Applied Physics, 1973, 44(7): 3008-3012

[25]

Klemme S, Blundy J D, Wood B J. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite. Geochimica et Cosmochimica Acta, 2002, 66(17): 3109-3123

[26]

Koudriachova M V, de Leeuw S W, Harrison N M. First-Principles Study of H Intercalation in Rutile TiO2. Physical Review B, 2004, 70(16): 165421

[27]

Kumar M. High Pressure Equation of State for Solids. Physica B: Condensed Matter, 1995, 212 4 391-394

[28]

Kumar M. Application of High Pressure Equation of State for Different Classes of Solids. Physica B: Condensed Matter, 1996, 217(1/2): 143-148

[29]

Kumar M. Thermoelastic Properties of Minerals. Physics and Chemistry of Minerals, 2003, 30: 556-558.

[30]

Lan T, Tang X L, Fultz B. Phonon Anharmonicity of Rutile TiO2 Studied by Raman Spectrometry and Molecular Dynamics Simulations. Physical Review B, 2012, 85(9): 094305

[31]

Li K Y, Xue D F. Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 2006, 110 39 11332-11337

[32]

Libowitzky E. Correlation of O-H Stretching Frequencies and O-H… O Hydrogen Bond Lengths in Minerals. Monatshefte für Chemie, 1999, 130(8): 1047-1059

[33]

Litasov K D, Kagi H, Shatskiy A, . High Hydrogen Solubility in Al-Rich Stishovite and Water Transport in the Lower Mantle. Earth and Planetary Science Letters, 2007, 262(3/4): 620-634

[34]

Lucassen F, Koch-Muller M, Taran M, . Coupled H and Nb, Cr, and V Trace Element Behavior in Synthetic Rutile at 600 °C, 400 MPa and Possible Geological Application. American Mineralogist, 2012, 98(1): 7-18

[35]

Maldener J, Rauch F, Gavranic M, . OH Absorption Coefficients of Rutile and Cassiterite Deduced from Nuclear Reaction Analysis and FTIR Spectroscopy. Mineralogy and Petrology, 2001, 71(1/2): 21-29

[36]

Mammone J F, Sharma S K, Nicol M. Raman Study of Rutile (TiO2) at High Pressures. Solid State Communications, 1980, 34(10): 799-802

[37]

Meagher E P, Lager G A. Polyhedral Thermal Expansion in the TiO2 Polymorphs: Refinement of the Crystal Structure of Rutile and Brookite at High Temperature. The Canadian Mineralogist, 1979, 17: 77-85.

[38]

Miao Y F, Pang Y W, Ye Y, . Crystal Structures and High-Temperature Vibrational Spectra for Synthetic Boron and Aluminum Doped Hydrous Coesite. Crystals, 2019, 9(12): 642

[39]

Ming L C, Manghnani M H. Isothermal Compression of TiO2 (Rutile) under Hydrostatic Pressure to 106 kbar. Journal of Geophysical Research, 1979, 84 B9 4777-4779

[40]

Mookherjee M, Redfern S A T, Zhang M. Thermal Response of Structure and Hydroxyl Ion of Phengite-2M1: An in situ Neutron Diffraction and FTIR Study. European Journal of Mineralogy, 2001, 13(3): 545-555

[41]

Nie J Z, Liu Y C, Yang Y. Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton. Journal of Earth Science, 2018, 29(5): 1236-1253

[42]

Pawley A R, McMillan P F, Holloway J R. Hydrogen in Stishovite, with Implications for Mantle Water Content. Science, 1993, 261(5124): 1024-1026

[43]

Porto S P S, Fleury P A, Damen T C. Raman Spectra of TiO2, MgF2, ZnF2, FeF2 and MnF2. Physical Review, 1967, 154(2): 522-526

[44]

Rao K V K, Naidu S V N, Iyengar L. Thermal Expansion of Rutile and Anatase. Journal of the American Ceramic Society, 1970, 53(3): 124-126

[45]

Rossman G R, Smyth J R. Hydroxyl Content of Accessory Minerals in Mantle Eclogites and Related Rocks. American Mineralogist, 1990, 75: 775-780.

[46]

Samara G A, Peercy P S. Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2 (Rutile). Physical Review B, 1973, 7(3): 1131-1148

[47]

Sato, Y., 1977. Equation of State of Mantle Minerals Determined through High-Pressure X-Day Study. High Pressure Research Applications in Geophysics, (1977): 307–323. https://doi.org/10.1016/b978-0-12-468750-9.50028-0

[48]

Saxena S K, Chatterjee N, Fei Y, . Thermodynamic Data on Oxides and Silicates: An Assessed Data Set Based on Thermochemistry and High Pressure Phase Equilibrium, 1993, Berlin, Heidelberg, New York: Springer-Verlag

[49]

Sheng Y M, Xia Q K, Hao Y T. Water in Rutiles from UHP Eclogites in the Dabie Orogen. Acta Petrologica et Mineralogica, 2007, 26: 269-274. (in Chinese with English Abstract)

[50]

Soffer B H. Studies of the Optical and Infrared Absorption Spectra of Rutile Single Crystals. The Journal of Chemical Physics, 1961, 35(3): 940-945

[51]

Song Y R, Jin Z M. Nanometer-Sized UHP Rutile: Tracing the Depth of Continental Deep Subduction. Earth Science Frontiers, 2002, 9: 267-272. (in Chinese with English Abstract)

[52]

Su W, Li J L, Mao Q, . Rutile in HP Rocks from the Western Tianshan, China: Mineralogy and Its Economic Implications. Journal of Earth Science, 2018, 29(5): 1049-1059

[53]

Sugiyama K, Takéuchi Y. The Crystal Structure of Rutile as a Function of Temperature up to 1 600 °C. Zeitschrift für Kristallographie-Crystalline Materials, 1991, 194(1/2/3/4): 305-313

[54]

Suzuki I. Thermal Expansion of Periclase and Olivine, and Their Anharmonic Properties. Journal of Physics of the Earth, 1975, 23(2): 145-159

[55]

Suzuki I, Okajima S I, Seya K. Thermal Expansion of Single-Crystal Manganosite. Journal of Physics of the Earth, 1979, 27(1): 63-69

[56]

Swope R J, Smyth J R, Larson A C. H in Rutile-Type Compounds: I. Single-Crystal Neutron and X-Ray Diffraction Study of H in Rutile. American Mineralogist, 1995, 80(5/6): 448-453

[57]

Tokonami M. Atomic Scattering Factor for O2-. Acta Crystallographica, 1965, 19(3): 486-486

[58]

Touloukian Y S, Kirby R K. Thermophysical Properties of Matter; Volume 13: Thermal Expansion; Nonmetallic Solids, 1977, New York, Washington: IFI/Plenum

[59]

Vlassopoulos D, Rossman G R, Haggerty S E. Coupled Substitution of High and Minor Elements in Rutile and the Implications of High OH Contents in Nb- and Cr-Rich Rutile from the Upper Mantle. American Mineralogist, 1993, 78: 1181-1191.

[60]

Wang X, Xu X X, Ye Y, . In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties. Journal of Earth Science, 2019, 30(5): 964-976

[61]

Xie Z J, Liu X W, Jin Z M, . Microstructures and Phase Transition in Omphacite: Constraints on the P-T Path of Shuanghe Eclogite (Dabie Orogen). Journal of Earth Science, 2020, 31(2): 254-261

[62]

Xiong X L, Adam J, Green T H. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 2005, 218(3/4): 339-359

[63]

Xiong X L, Keppler H, Audétat A, . Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt. Geochimica et Cosmochimica Acta, 2011, 75(7): 1673-1692

[64]

Yang Y, Xia Q, Feng M, . In situ FTIR Investigations at Varying Temperatures on Hydrous Components in Rutile. American Mineralogist, 2011, 96(11/12): 1851-1855

[65]

Zack T, Kronz A, Foley S F, . Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists. Chemical Geology, 2002, 184(1/2): 97-122

[66]

Zaffiro G, Angel R J, Alvaro M. Constraints on the Equations of State of Stiff Anisotropic Minerals: Rutile, and the Implications for Rutile Elastic Barometry. Mineralogical Magazine, 2019, 83(3): 339-347

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/