Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China

Chuanbo Shen , Di Hu , Kyoungwon Min , Chaoqun Yang , Xiaowei Zeng , Hongyang Fu , Xiang Ge

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (5) : 905 -918.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (5) : 905 -918. DOI: 10.1007/s12583-020-1346-2
Structural Geology

Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China

Author information +
History +
PDF

Abstract

The Mufushan massif, as continental intra-plate magmatites located in the Jiangnan-Xuefeng orogenic belt of the South China. The Mufushan massif constitutes the largest Mesozoic intrusive complex, intruded the Mesoproterozoic Lengjiaxi Formation. Multiple geochronometric dating was used to reconstruct their evolution from emplacement to exhumation. The Mufushan granitoids were emplaced at ∼150 Ma (U-Pb zircon) as post-orogenic magmatites contributing to Triassic crustal thickening. Onset of regional extension at ∼128 Ma (40Ar/39Ar white mica and biotite) manifests a tectonic regime switch. Intense exhumation prior to ∼55 Ma was followed by slow denudation and peneplanation for the next 37 Ma (∼55’18 Ma). Accelerated cooling since ∼18 Ma may have been caused by a far-field effect of the collision between India-Asia Plate or the Pacific-Plate subduction. Through a multi-geochronometric approach, this study provides a new comprehensive model for the cause of the intra-plate magmatism formation in the South China, and also established a reliable geochronological framework of the post-orogenic tectonic evolutions of the Jiangnan-Xuefeng orogenic belt.

Keywords

tectonic evolution / 40Ar/39Ar dating / apatite fission track / (U-Th-Sm)/He dating / South China

Cite this article

Download citation ▾
Chuanbo Shen, Di Hu, Kyoungwon Min, Chaoqun Yang, Xiaowei Zeng, Hongyang Fu, Xiang Ge. Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China. Journal of Earth Science, 2020, 31(5): 905-918 DOI:10.1007/s12583-020-1346-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arne D, Worley B, Wilson C, . Differential Exhumation in Response to Episodic Thrusting along the Eastern Margin of the Tibetan Plateau. Tectonophysics, 1997, 280(3/4): 239-256.

[2]

Avouac J P, Tapponnier P. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 1993, 20(10): 895-898.

[3]

Bai D Y, Zhong X, Jia P Y, . Study on the Deformation in the Southern Xuefeng Orogenic Belt. Geotectonica et Metallogenia, 2014, 38(3): 512-529

[4]

Bai X J, Qiu H N, Liu W G, . Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. Journal of Earth Science, 2018, 29(2): 408-415.

[5]

Belton D X, Raab M J. Cretaceous Reactivation and Intensified Erosion in the Archean-Proterozoic Limpopo Belt, Demonstrated by Apatite Fission Track Thermochronology. Tectonophysics, 2010, 480(1/2/3/4): 99-108.

[6]

Beucher R, Brown R W, Roper S, . Natural Age Dispersion Arising from the Analysis of Broken Crystals: Part II. Practical Application to Apatite (U-Th)/He Thermochronometry. Geochimica et Cosmochimica Acta, 2013, 120: 395-416.

[7]

Brown R W, Beucher R, Roper S, . Natural Age Dispersion Arising from the Analysis of Broken Crystals: Part I. Theoretical Basis and Implications for the Apatite (U-Th)/He Thermochronometer. Geochimica et Cosmochimica Acta, 2013, 122: 478-497.

[8]

Chen L, Ma C Q, She Z B, . Petrogenesis and Tectonic Implications of A-Type Granites in the Dabie Orogenic Belt, China: Geochronological and Geochemical Constraints. Geological Magazine, 2009, 146(5): 638-651.

[9]

Cherniak D, Watson E. Pb Diffusion in Zircon. Contrib. Mineral. Petrol., 2000, 172: 198-207.

[10]

Chu Y, Faure M, Lin W, . Early Mesozoic Tectonics of the South China Block: Insights from the Xuefengshan Intracontinental Orogen. Journal of Asian Earth Sciences, 2012, 61: 199-220.

[11]

Chu Y, Faure M, Lin W, . Tectonics of the Middle Triassic Intracontinental Xuefengshan Belt, South China: New Insights from Structural and Chronological Constraints on the Basal Décollement Zone. International Journal of Earth Sciences, 2012, 101(8): 2125-2150.

[12]

de Grave J, van den Haute P, Buslov M M, . Apatite Fission-Track Thermochronology Applied to the Chulyshman Plateau, Siberian Altai Region. Radiation Measurements, 2008, 43(1): 38-42.

[13]

Deng B, Liu S G, Li Z W, . Differential Exhumation at Eastern Margin of the Tibetan Plateau, from Apatite Fission-Track Thermochronology. Tectonophysics, 2013, 591: 98-115.

[14]

Ding R X, Zou H P, Min K, . Detrital Zircon U-Pb Geochronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 2017, 28(2): 295-304.

[15]

Donelick R A, Ketcham R A, Carlson W D. Variability of Apatite Fission-Track Annealing Kinetics; II, Crystallographic Orientation Effects. American Mineralogist, 1999, 84(9): 1224-1234.

[16]

Donelick R A, O’Sullivan P B, Ketcham R A. Apatite Fission-Track Analysis. Reviews in Mineralogy and Geochemistry, 2005, 58: 49-94.

[17]

Dong Y P, Genser J, Neubauer F, . U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China. Gondwana Research, 2011, 19(4): 881-893.

[18]

Duggen S, Hoernle K, van den Bogaard P, . Post-Collisional Transition from Subduction- To Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 2005, 46(6): 1155-1201.

[19]

Enkelmann E, Ratschbacher L, Jonckheere R, . Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin?. Geological Society of America Bulletin, 2006, 118(5/6): 651-671.

[20]

Farley K A. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 819-844.

[21]

Farley K A, Wolf R A, Silver L T. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 1996, 60(21): 4223-4229.

[22]

Faure M, Lepvrier C, Nguyen V V, . The South China Block-Indochina Collision: Where, When, and How?. Journal of Asian Earth Sciences, 2014, 79: 260-274.

[23]

Fitzgerald P G, Baldwin S L, Webb L E, . Interpretation of (U-Th)/He Single Grain Ages from Slowly Cooled Crustal Terranes: A Case Study from the Transantarctic Mountains of Southern Victoria Land. Chemical Geology, 2006, 225(1/2): 91-120.

[24]

Ge X, Shen C B, Selby D, . Apatite Fission-Track and Re-Os Geochronology of the Xuefeng Uplift, China: Temporal Implications for Dry Gas Associated Hydrocarbon Systems. Geology, 2016, 44(6): 491-494.

[25]

Ge X, Shen C B, Selby D, . Neoproterozoic-Cambrian Petroleum System Evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights from Pyrobitumen Rhenium-Osmium Geochronology and Apatite Fission-Track Analysis. AAPG Bulletin, 2018, 102(8): 1429-1453.

[26]

Gleadow A J W, Belton D X, Kohn B P, . Fission Track Dating of Phosphate Minerals and the Thermochronology of Apatite. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 579-630.

[27]

He Z Y, Xu X S, Niu Y L. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 2010, 119(3/4): 621-641.

[28]

Heberer B, Anzenbacher T, Neubauer F, . Polyphase Exhumation in the Western Qinling Mountains, China: Rapid Early Cretaceous Cooling along a Lithospheric-Scale Tear Fault and Pulsed Cenozoic Uplift. Tectonophysics, 2014, 617: 31-43.

[29]

Hu J, Zhang S T, Zhang G Z, . Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 2017, 29(1): 130-143.

[30]

Hu S B, Kohn B P, Raza A, . Cretaceous and Cenozoic Cooling History across the Ultrahigh Pressure Tongbai-Dabie Belt, Central China, from Apatite Fission-Track Thermochronology. Tectonophysics, 2006, 420(3/4): 409-429.

[31]

Hu S B, Raza A, Min K, . Late Mesozoic and Cenozoic Thermotectonic Evolution along a Transect from the North China Craton through the Qinling Orogen into the Yangtze Craton, Central China. Tectonics, 2006, 25(6): 97-112.

[32]

Huang C J, Hinnov L. Evolution of an Eocene-Oligocene Saline Lake Depositional System and Its Controlling Factors, Jianghan Basin, China. Journal of Earth Science, 2014, 25(6): 959-976.

[33]

IGSH The Laboratory of Isotopic Geology, Institute of Geological Sciences, Hubei, China Isotopic Ages of Some Magmatic and Metamorphic Rocks from the Yangtze Valley and Adjacent Regions. Geochimica, 1974, 3: 32-41.

[34]

Jiang W C, Li H, Wu J H, . A Newly Found Biotite Syenogranite in the Huangshaping Polymetallic Deposit, South China: Insights into Cu Mineralization. Journal of Earth Science, 2018, 29(3): 537-555.

[35]

Jiang Y H, Jiang S Y, Dai B Z, . Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China: Implications for a Continental Arc to Rifting. Lithos, 2009, 107(3/4): 185-204.

[36]

Jonckheere R, Enkelmann E, Min M, . Confined Fission Tracks in Ion-Irradiated and Step-Etched Prismatic Sections of Durango Apatite. Chemical Geology, 2007, 242(1/2): 202-217.

[37]

Kelley S. K-Ar and Ar-Ar Dating. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 785-818.

[38]

Ketcham R A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 275-314.

[39]

Ketcham R A, Donelick R A, Balestrieri M L, . Reproducibility of Apatite Fission-Track Length Data and Thermal History Reconstruction. Earth and Planetary Science Letters, 2009, 284(3/4): 504-515.

[40]

Ketcham R A, Donelick R A, Carlson W D. Variability of Apatite Fission-Track Annealing Kinetics; III, Extrapolation to Geological Time Scales. American Mineralogist, 1999, 84(9): 1235-1255.

[41]

Kuritani T, Ohtani E, Kimura J I. Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation. Nature Geoscience, 2011, 4(10): 713-716.

[42]

Li J H, Zhang Y Q, Dong S W, . Late Mesozoic-Early Cenozoic Deformation History of the Yuanma Basin, Central South China. Tectonophysics, 2012, 570–571: 163-183.

[43]

Li J W, Deng X D, Zhou M F, . Laser Ablation ICP-MS Titanite U-Th-Pb Dating of Hydrothermal Ore Deposits: A Case Study of the Tonglushan Cu-Fe-Au Skarn Deposit, SE Hubei Province, China. Chemical Geology, 2010, 270(1/2/3/4): 56-67.

[44]

Li J W, Vasconcelos P M, Zhou M F, . Longevity of Magmatic-Hydrothermal Systems in the Daye Cu-Fe-Au District, Eastern China with Implications for Mineral Exploration. Ore Geology Reviews, 2014, 57: 375-392.

[45]

Li P C. Magmatism of Phanerozoicgranitoids in Southeastern Hunan Province, China and Its Evolution Regularity, 2006, Beijing: Graduate School of Chinese Academy of Sciences, 1-75

[46]

Li X H. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 2000, 18(3): 293-305.

[47]

Li X H, Li W X, Wang X C, . SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China: Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 2010, 119(3/4): 427-438.

[48]

Li Z X, Li X H. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 2007, 35(2): 179-182.

[49]

Liu M, Cui X J, Liu F T. Cenozoic Rifting and Volcanism in Eastern China: A Mantle Dynamic Link to the Indo-Asian Collision?. Tectonophysics, 2004, 393(1/2/3/4): 29-42.

[50]

Ludwig K R. User’s Manual for Isoplot 3.23: A Geochronological Toolkit for Microsoft Excel Berkeley Geochronology Center. Special Publication, 2003, 4: 1-71.

[51]

Macaulay E A, Sobel E R, Mikolaichuk A, . Cenozoic Deformation and Exhumation History of the Central Kyrgyz Tien Shan. Tectonics, 2014, 33(2): 135-165.

[52]

McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method, 1999, Oxford: Oxford University Press, 1-269

[53]

McDowell F W, McIntosh W C, Farley K A. A Precise 40Ar-39Ar Reference Age for the Durango Apatite (U-Th)/He and Fission-Track Dating Standard. Chemical Geology, 2005, 214(3/4): 249-263.

[54]

Min K, Farah A E, Lee S R, . (U-Th)/He Ages of Phosphates from Zagami and ALHA77005 Martian Meteorites: Implications to Shock Temperatures. Geochimica et Cosmochimica Acta, 2017, 196: 160-178.

[55]

Murray K E, Orme D A, Reiners P W. Effects of U-Th-Rich Grain Boundary Phases on Apatite Helium Ages. Chemical Geology, 2014, 390: 135-151.

[56]

Peng H Q, Jia B H, Tang X S. Uplift Process of Mufushan and Thermochronology of Wangxiang Granites in Northeastern Hunan Province. Geological Science & Technology Information, 2004, 23(1): 11-15

[57]

Pirajno F, Ernst R E, Borisenko A S, . Intraplate Magmatism in Central Asia and China and Associated Metallogeny. Ore Geology Reviews, 2009, 35(2): 114-136.

[58]

Qian L H, Lai J Q, Hu L F, . Geochronology and Geochemistry of the Granites from the Longtoushan Hydrothermal Gold Deposit in the Dayaoshan Area, Guangxi: Implication for Petrogenesis and Mineralization. Journal of Earth Science, 2019, 30(2): 309-322.

[59]

Ratschbacher L, Franz L, Enkelmann E, . Sino-Korean-Yangtze Suture, Huwan Detachment, and Paleozoic-Tertiary Exhumation of (Ultra) High-Pressure Rocks along Tongbai-Xinxian-Dabie. Geological Society of America Special Paper, 2006, 403: 45-75.

[60]

Ratschbacher L, Hacker B R, Calvert A, . Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 2003, 366(1/2): 1-53.

[61]

Reiners P W, Chan M A, Evenson N S. (U-Th)/He Geochronology and Chemical Compositions of Diagenetic Cement, Concretions, and Fracture-Filling Oxide Minerals in Mesozoic Sandstones of the Colorado Plateau. Geological Society of America Bulletin, 2014, 126(9/10): 1363-1383.

[62]

Reiners P W, Farley K A. Influence of Crystal Size on Apatite (U-Th)/He Thermochronology: An Example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 2001, 188(3/4): 413-420.

[63]

Richardson N J, Densmore A L, Seward D, . Extraordinary Denudation in the Sichuan Basin: Insights from Low-Temperature Thermochronology Adjacent to the Eastern Margin of the Tibetan Plateau. Journal of Geophysical Research, 2008, 113(B4): B04409

[64]

Roddick J C. The Application of Isochron Diagrams in 40Ar/39Ar Dating: A Discussion. Earth Planet Science Letter, 1978, 48: 185-208.

[65]

Sharp W D, Clague D A. 50-Ma Initiation of Hawaiian-Emperor Bend Records Major Change in Pacific Plate Motion. Science, 2006, 313(5791): 1281-1284.

[66]

Shen C B, Donelick R A, O’Sullivan P B, . Provenance and Hinterland Exhumation from LA-ICP-MS Zircon U-Pb and Fission-Track Double Dating of Cretaceous Sediments in the Jianghan Basin, Yangtze Block, Central China. Sedimentary Geology, 2012, 281 194-207.

[67]

Shen C B, Hu D, Shao C, . Thermochronology Quantifying Exhumation History of the Wudang Complex in the South Qinling Orogenic Belt, Central China. Geological Magazine, 2018, 155(4): 893-906.

[68]

Shen C B, Mei L F, Min K, . Multi-Chronometric Dating of the Huarong Granitoids from the Middle Yangtze Craton: Implications for the Tectonic Evolution of Eastern China. Journal of Asian Earth Sciences, 2012, 52: 73-87.

[69]

Shen C B, Mei L F, Peng L, . LA-ICPMS U-Pb Zircon Age Constraints on the Provenance of Cretaceous Sediments in the Yichang Area of the Jianghan Basin, Central China. Cretaceous Research, 2012, 34: 172-183.

[70]

Shen C B, Mei L F, Xu S H. Fission Track Dating of Mesozoic Sandstones and Its Tectonic Significance in the Eastern Sichuan Basin, China. Radiation Measurements, 2009, 44(9/10): 945-949.

[71]

Shi H C, Shi X B, Yang X Q, . The Exhumation Process of Mufushan Granite in Jiangnan Uplift since Cenozoic: Evidence from Low-Temperature Thermochronology. Chinese Journal of Geophysics, 2013, 56(3): 273-286.

[72]

Sperner B, Jonckheere R, Pfänder J A. Testing the Influence of High-Voltage Mineral Liberation on Grain Size, Shape and Yield, and on Fission Track and 40Ar/39Ar Dating. Chemical Geology, 2014, 371: 83-95.

[73]

Sun W D, Ding X, Hu Y H, . The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542.

[74]

Sun W D, Ling M X, Wang F Y, . Pacific Plate Subduction and Mesozoic Geological Event in Eastern China. Bulletin of Mineralogy Petrology & Geochemistry, 2008, 27(3): 218-223

[75]

Tapponnier P. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294(5547): 1671-1677.

[76]

Tian Y T, Kohn B P, Gleadow A J W, . Constructing the Longmen Shan Eastern Tibetan Plateau Margin: Insights from Low-Temperature Thermochronology. Tectonics, 2013, 32(3): 576-592.

[77]

Tian Y T, Kohn B P, Hu S B, . Synchronous Fluvial Response to Surface Uplift in the Eastern Tibetan Plateau: Implications for Crustal Dynamics. Geophysical Research Letters, 2015, 42(1): 29-35.

[78]

Tian Y T, Kohn B P, Zhu C Q, . Post-Orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China. Basin Research, 2012, 24(1): 70-90.

[79]

Walter M J, Kohn S C, Araujo D, . Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011, 334(6052): 54-57.

[80]

Wan T F, Zhao Q L. The Genesis of Tectono-Magmatism in Eastern China. Science China Earth Sciences, 2012, 55(3): 347-354.

[81]

Wang L X, Ma C Q, Zhang C, . Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 2014, 206–207: 147-163.

[82]

Wang Y J, Zhang Y H, Fan W M, . Structural Signatures and 40Ar/39Ar Geochronology of the Indosinian Xuefengshan Tectonic Belt, South China Block. Journal of Structural Geology, 2005, 27(6): 985-998.

[83]

Wei W, Xu J D, Zhao D P, . East Asia Mantle Tomography: New Insight into Plate Subduction and Intraplate Volcanism. Journal of Asian Earth Sciences, 2012, 60: 88-103.

[84]

Wendt I, Carl C. The Statistical Distribution of the Mean Squared Weighted Deviation. Chemical Geology, 1991, 86: 275-285.

[85]

Wu L L, Mei L F, Paton D A, . Basement Structures Have Crucial Influence on Rift Development: Insights from the Jianghan Basin, Central China. Tectonics, 2020, 39(2): 1-21.

[86]

Xie G Q, Mao J W, Zhao H J. Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Late Mesozoic Intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China. Lithos, 2011, 125(1/2): 693-710.

[87]

Yang C Q, Shen C B, Zattin M, . Provenances of Cenozoic Sediments in the Jianghan Basin and Implications for the Formation of the Three Gorges. International Geology Review, 2019, 61(16): 1980-1999.

[88]

Yang Z, Ratschbacher L, Jonckheere R, . Late-Stage Foreland Growth of China’s Largest Orogens (Qinling, Tibet): Evidence from the Hannan-Micang Crystalline Massifs and the Northern Sichuan Basin, Central China. Lithosphere, 2013, 5(4): 420-437.

[89]

Yang Z, Shen C B, Ratschbacher L, . Sichuan Basin and Beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 2017, 122(6): 4712-4740

[90]

Yarmolyuk V V, Kuzmin M I, Ernst R E. Intraplate Geodynamics and Magmatism in the Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2014, 93: 158-179.

[91]

Yu X Q, Liu J L, Zhang D H, . Uprising Period and Elevation of the Wenyu Granitic Pluton in the Xiaoqinling District, Central China. Chinese Science Bulletin, 2013, 58(35): 4459-4471.

[92]

Yuan W M, Dong J Q, Wang S C, . Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 2006, 27(6): 847-856.

[93]

Yuan Y S, Zhu C Q, Hu S B. Heat Flow History, Tectono-Sedimentary Evolution and Thermal Events of the Jianghan Basin. Progress in Geophysics, 2007, 22(3): 934-939

[94]

Zeitler P K, Enkelmann E, Thomas J B, . Solubility and Trapping of Helium in Apatite. Geochimica et Cosmochimica Acta, 2017, 209: 1-8.

[95]

Zhang C, Ma C Q, Holtz F. Origin of High-Mg Adakitic Magmatic Enclaves from the Meichuan Pluton, Southern Dabie Orogen (Central China): Implications for Delamination of the Lower Continental Crust and Melt-Mantle Interaction. Lithos, 2010, 119(3/4): 467-484.

[96]

Zhang J, Ma Z J, Yang J, . The Attributes of the Mesozoic Basins along the Western Foothill of Xuefengshan Mt. and Its Tectonic Significance. Acta Geologica Sinica, 2010, 84(5): 631-65075

[97]

Zhang J, Wang Y N, Zhang B H, . Evolution of the NE Qinghai-Tibetan Plateau, Constrained by the Apatite Fission Track Ages of the Mountain Ranges around the Xining Basin in NW China. Journal of Asian Earth Sciences, 2015, 97: 10-23.

[98]

Zhou X M, Li W X. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Un-derplating of Mafic Magmas. Tectonophysics, 2000, 326(3/4): 269-287.

[99]

Zhou X M, Sun T, Shen W Z, . Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 2006, 29(1): 26-33.

[100]

Zou H J, Ma C Q, Wang L X. A Magma Ascent Rate of Epidote-Bearing Granodioritic Magma in the Mufushan Complex Batholith of NE Hunan Province: Evidence from Petrography and Mineral Chemistry. Acta Geological Sinica, 2011, 85(3): 366-378

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/