Microstructure Characterization of a Biogenic Shale Gas Formation—Insights from the Antrim Shale, Michigan Basin

Kouqi Liu , Natalia Zakharova , Thomas Gentzis , Adedoyin Adeyilola , Humberto Carvajal-Ortiz , Hallie Fowler

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (6) : 1229 -1240.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (6) : 1229 -1240. DOI: 10.1007/s12583-020-1344-4
Article

Microstructure Characterization of a Biogenic Shale Gas Formation—Insights from the Antrim Shale, Michigan Basin

Author information +
History +
PDF

Abstract

Biogenic gas shales, predominantly microbial in origin, form an important class of organic-rich shale reservoirs with a significant economic potential. Yet large gaps remain in the understanding of their gas generation, storage, and transport mechanisms, as previous studies have been largely focused on mature thermogenic shale reservoirs. In this study, the pore structure of 18 Antrim Shale samples was characterized using gas adsorption (CO2 and N2). The results show that most of the Antrim Shale samples are rich in organic matter content (0.58 wt.% to 14.15 wt.%), with highest values found in the Lachine and Norwood members. Samples from the Paxton Member, characterized by lower organic content, have smaller micropore surface area and micropore volume but larger meso-macro pore surface area and volume. The deconvolution results of the pore size distribution from the N2 adsorption indicate that all of the tested Antrim Shale samples have similar pore groups. Organic matter in the Antrim Shale hosts micro pores instead of meso-macro pores, while clay minerals host both micro and meso-macro pores. Mineral-related pores play a primary role in the total porosity. The biogenic Antrim Shale, therefore, has different pore structures from other well-studied thermogenic gas shales worldwide.

Keywords

gas adsorption / Antrim Shale / biogenic shale / organic matter

Cite this article

Download citation ▾
Kouqi Liu, Natalia Zakharova, Thomas Gentzis, Adedoyin Adeyilola, Humberto Carvajal-Ortiz, Hallie Fowler. Microstructure Characterization of a Biogenic Shale Gas Formation—Insights from the Antrim Shale, Michigan Basin. Journal of Earth Science, 2020, 31(6): 1229-1240 DOI:10.1007/s12583-020-1344-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chalmers G R, Bustin R M, Power I M. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 2012, 96(6): 1099-1119.

[2]

Chen J, Xiao X M. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 2014, 129: 173-181.

[3]

Clarkson C R, Solano N, Bustin R M, . Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 2013, 103: 606-616.

[4]

Colosimo F, Thomas R, Lloyd J R, . Biogenic Methane in Shale Gas and Coal Bed Methane: A Review of Current Knowledge and Gaps. International Journal of Coal Geology, 2016, 165: 106-120.

[5]

Currie B J. Stratigraphy of the Upper Devonian-Lower Mississippian Michigan Basin: Review and Revision with an Emphasis on the Ellsworth Petroleum System: [Dissertation], 2016, Kalamazoo: Geological and Environmental Sciences, Western Michigan University

[6]

Curtis J B. Fractured Shale-Gas Systems. AAPG Bulletin, 2002, 86(11): 1921-1938

[7]

Do D D, Do H D. Pore Characterization of Carbonaceous Materials by DFT and GCMC Simulations: A Review. Adsorption Science & Technology, 2003, 21(5): 389-423.

[8]

Garrido J, Linares-Solano A, Martin-Martinez J M, . Use of Nitrogen vs. Carbon Dioxide in the Characterization of Activated Carbons. Langmuir, 1987, 3(1): 76-81.

[9]

Groen J C, Peffer L A A, Pérez-Ramírez J. Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 1-17.

[10]

Hill R J, Tang Y C, Kaplan I R. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 2003, 34(12): 1651-1672.

[11]

Hopkins, C. W., Frantz, J. H. Jr, Hill, D. G., et al., 1995. Estimating Fracture Geometry in the Naturally Fractured Antrim Shale. In: SPE Annual Technical Conference and Exhibition. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Oct. 22–25, Dallas, Texas

[12]

Jarvie, D. M., Claxton, B. L., Henk, F., et al., 2001. Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. Talk Presented at the AAPG National Convention, Jun. 3–6, 2001, Denver, CO

[13]

Jarvie D M, Hill R J, Ruble T E, . Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 2007, 91(4): 475-499.

[14]

Ji L M, Su L, Wu Y D, . Pore Evolution in Hydrocarbon-Generation Simulation of Organic Matter-Rich Muddy Shale. Petroleum Research, 2017, 2(2): 146-155.

[15]

Jia B, Tsau J S, Barati R. A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs. Fuel, 2019, 236: 404-427.

[16]

Ko L T, Ruppel S C, Loucks R G, . Pore-Types and Pore-Network Evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett Mudstones: Insights from Laboratory Thermal Maturation and Organic Petrology. International Journal of Coal Geology, 2018, 190: 3-28.

[17]

Krüger M, van Berk W, Arning E T, . The Biogenic Methane Potential of European Gas Shale Analogues: Results from Incubation Experiments and Thermodynamic Modelling. International Journal of Coal Geology, 2014, 136: 59-74.

[18]

Li J Q, Zhang P F, Lu S F, . Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 2019, 30(4): 823-833.

[19]

Liu B, Song Y, Zhu K, . Mineralogy and Element Geochemistry of Salinized Lacustrine Organic-Rich Shale in the Middle Permian Santanghu Basin: Implications for Paleoenvironment, Provenance, Tectonic Setting and Shale Oil Potential. Marine and Petroleum Geology, 2020, 120: 104569

[20]

Liu K Q, Ostadhassan M, Gentzis T, . Characterization of Geochemical Properties and Microstructures of the Bakken Shale in North Dakota. International Journal of Coal Geology, 2018, 190 84-98.

[21]

Liu K Q, Ostadhassan M, Zhou J, . Nanoscale Pore Structure Characterization of the Bakken Shale in the USA. Fuel, 2017, 209: 567-578.

[22]

Liu K Q, Wang L, Ostadhassan M, . Nanopore Structure Comparison between Shale Oil and Shale Gas: Examples from the Bakken and Longmaxi Formations. Petroleum Science, 2019, 16(1): 77-93.

[23]

Loucks R G, Reed R M, Ruppel S C, . Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 2012, 96(6): 1071-1098.

[24]

Ma, Y. Z., Holditch, S., 2015. Unconventional Oil and Gas Resources Handbook: Evaluation and Development. Gulf Professional Publishing

[25]

Manger, K. C., Oliver, S. J. P., Curtis, J. B., et al., 1991. Geologic Influences on the Location and Production of Antrim Shale Gas, Michigan Basin. Low Permeability Reservoirs Symposium, Society of Petroleum Engineers, Apr. 15–17, Denver, Colorado. SPE 21854

[26]

Martini A M, Walter L M, Ku T C W, . Microbial Production and Modification of Gases in Sedimentary Basins: A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin. AAPG Bulletin, 2003, 87(8): 1355-1375.

[27]

Pfeifer P, Wu Y J, Cole M W, . Multilayer Adsorption on a Fractally Rough Surface. Physical Review Letters, 1989, 62(17): 1997-2000.

[28]

Rebata-Landa, V., Santamarina, J. C., 2006. Mechanical Limits to Microbial Activity in Deep Sediments. Geochemistry, Geophysics, Geosystems, 7(11). https://doi.org/10.1029/2006gc001355

[29]

Reeves, S. R., Cox, D. O., Smith, M. B., et al., 1993. Stimulation Technology in the Antrim Shale. In: SPE Gas Technology Symposium. SPE Gas Technology Symposium, Society of Petroleum Engineers, Jun. 28–30, Calgary, Alberta

[30]

Rice, D. D., 1993. Biogenic Gas: Controls, Habitats, and Resource Potential. United States Geological Survey, Professional Paper. 1570

[31]

Rouquerol J, Avnir D, Fairbridge C W, . Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 1994, 66(8): 1739-1758.

[32]

Sahouli B, Blacher S, Brouers F. Applicability of the Fractal FHH Equation. Langmuir, 1997, 13(16): 4391-4394.

[33]

Schulz H M, Biermann S, van Berk W, . From Shale Oil to Biogenic Shale Gas: Retracing Organic-Inorganic Interactions in the Alum Shale (Furongian-Lower Ordovician) in Southern Sweden. AAPG Bulletin, 2015, 99(5): 927-956.

[34]

Strąpoć D, Mastalerz M, Dawson K, . Biogeochemistry of Microbial Coal-Bed Methane. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 617-656.

[35]

Stolper D A, Martini A M, Clog M, . Distinguishing and Understanding Thermogenic and Biogenic Sources of Methane Using Multiply Substituted Isotopologues. Geochimica et Cosmochimica Acta, 2015, 161: 219-247.

[36]

Wang Y, Liu L F, Zheng S S, . Full-Scale Pore Structure and Its Controlling Factors of the Wufeng-Longmaxi Shale, Southern Sichuan Basin, China: Implications for Pore Evolution of Highly Overmature Marine Shale. Journal of Natural Gas Science and Engineering, 2019, 67: 134-146.

[37]

Wuchter C, Banning E, Mincer T J, . Microbial Diversity and Methanogenic Activity of Antrim Shale Formation Waters from Recently Fractured Wells. Frontiers in Microbiology, 2013, 4: 367

[38]

Yang R, He S, Yi J Z, . Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 2016, 70 27-45.

[39]

Zhang Q, Liu R H, Pang Z L, . Characterization of Microscopic Pore Structures in Lower Silurian Black Shale(S11), Southeastern Chongqing, China. Marine and Petroleum Geology, 2016, 71: 250-259.

[40]

Zhou W D, Xie S Y, Bao Z Y, . Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 2019, 30(5): 879-892.

[41]

Zoback M D, Kohli A H. Unconventional Reservoir Geomechanics. Cambridge University Press, Cambridge Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China: Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 2019, 29(3): 479-491

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/