Effects of Water on the Rheology of Dominant Minerals and Rocks in the Continental Lower Crust: A Review

Zhonghang Wang , Feng Shi , Junfeng Zhang

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (6) : 1170 -1182.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (6) : 1170 -1182. DOI: 10.1007/s12583-020-1307-9
Article

Effects of Water on the Rheology of Dominant Minerals and Rocks in the Continental Lower Crust: A Review

Author information +
History +
PDF

Abstract

As an important part of the continental lithosphere, the continental lower crust can influence and control many important geodynamic processes, which are of great significance to the evolution of the lithosphere. Extensive plastic deformation is common in continental lower crust. There have been many studies focusing on the rheology of the continental lower crust in the past few decades. This paper provides a review on the effects of water on the rheology of dominant minerals (clinopyroxene, plagioclase and garnet) and rocks in the continental lower crust. The water contents in continental lower crustal minerals and rocks are in general rich and very heterogenous from sample to sample and region to region. Water can significantly reduce the strength of clinopyroxene, plagioclase, garnet and lower crustal rocks. Water can also have a profound influence on fabric development and slip systems in lower crustal minerals. Quantitative experimental investigations and extensive natural studies of water effect on rheology are necessary to refine the classic lithosphere strength profile models and to address the existing controversy on strength of the continental lower crust.

Keywords

continental lower crust / water content / rheology / fabric / slip system

Cite this article

Download citation ▾
Zhonghang Wang, Feng Shi, Junfeng Zhang. Effects of Water on the Rheology of Dominant Minerals and Rocks in the Continental Lower Crust: A Review. Journal of Earth Science, 2020, 31(6): 1170-1182 DOI:10.1007/s12583-020-1307-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen F M, Smith B K, Buseck P R. Direct Observation of Dissociated Dislocations in Garnet. Science, 1987, 238(4834): 1695-1697

[2]

Asimow P D, Langmuir C H. The Importance of Water to Oceanic Mantle Melting Regimes. Nature, 2003, 421(6925): 815-820

[3]

Asmerom Y, Walker R J. Pb and Os Isotopic Constraints on the Composition and Rheology of the Lower Crust. Geology, 1998, 26(4): 359-362

[4]

Avé Lallemant H G. Experimental Deformation of Diopside and Websterite. Tectonophysics, 1978, 48(1/2): 1-27

[5]

Bai D H, Unsworth M J, Meju M A, . Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 2010, 3(5): 358-362

[6]

Bascou J, Barruol G, Vauchez A, . EBSD-Measured Lattice-Preferred Orientations and Seismic Properties of Eclogites. Tectonophysics, 2001, 342(1/2): 61-80

[7]

Bascou J, Tommasi A, Mainprice D. Plastic Deformation and Development of Clinopyroxene Lattice Preferred Orientations in Eclogites. Journal of Structural Geology, 2002, 24(8): 1357-1368

[8]

Bell D R, Rossman G R. Water in Earth’s Mantle: The Role of Nominally Anhydrous Minerals. Science, 1992, 255(5050): 1391-1397

[9]

Bercovici D, Karato S I. Whole-Mantle Convection and the Transition-Zone Water Filter. Nature, 2003, 425(6953): 39-44

[10]

Boland J N, Tullis T E. Deformation Behavior of Wet and Dry Clinopyroxenite in the Brittle to Ductile Transition Region. In: Hobbs, B. E., Heard, H. C., eds., Mineral and Rock Deformation: Laboratory Studies. Geophysical Monograph, 1986, 36: 35-49.

[11]

Brok B D, Kruhl J H. Ductility of Garnet as an Indicator of Extremely High Temperature Deformation: Discussion. Journal of Structural Geology, 1996, 18(11): 1369-1373

[12]

Bürgmann R, Dresen G. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations. Annual Review of Earth and Planetary Sciences, 2008, 36(1): 531-567

[13]

Burov E B, Watts A B. The Long-Term Strength of Continental Lithosphere: “Jelly Sandwich” or “Crème Brûlée’?. GSA Today, 2006, 16(1): 4

[14]

Byerlee J. Friction of Rocks. Pure and Applied Geophysics, 1978, 116 4/5 615-626

[15]

Bystricky M, Lawlis J, Mackwell S, . High-Temperature Deformation of Enstatite Aggregates. Journal of Geophysical Research: Solid Earth, 2016, 121(9): 6384-6400

[16]

Bystricky M, Mackwell S. Creep of Dry Clinopyroxene Aggregates. Journal of Geophysical Research: Solid Earth, 2001, 106(B7): 13443-13454

[17]

Chardon D, Jayananda M. Three-Dimensional Field Perspective on Deformation, Flow, and Growth of the Lower Continental Crust (Dharwar Craton, India). Tectonics, 2008, 27(1): TC1014

[18]

Chen L, Capitanio F A, Liu L J, . Crustal Rheology Controls on the Tibetan Plateau Formation during India-Asia Convergence. Nature Communications, 2017, 8 1 15992

[19]

Chen S, Hiraga T, Kohlstedt D L. Water Weakening of Clinopyroxene in the Dislocation Creep Regime. Journal of Geophysical Research, 2006, 111 B8 B08203

[20]

Chen X D, Lin C Y, Shi L B. Rheological Properties of the Lower Crust Xenoliths in Northern North China: Information Provided by the the Lower Crustal in Hannuoba, Hebei. Science China Earth Sciences, 2007, 37 5 593-604. (in Chinese)

[21]

Chen X D, Lin C Y, Shi L B. Deformation Microstructural Characteristics and Geological Implications of Granulite in the Middle and Lower Crust of the Cenozoic Basalts in Hannuoba. Acta Petrologica Sinica, 2007, 23(11): 2775-2784. (in Chinese with English Abstract)

[22]

Chowdhury P, Gerya T, Chakraborty S. Emergence of Silicic Continents as the Lower Crust Peels off on a Hot Plate-Tectonic Earth. Nature Geoscience, 2017, 10(9): 698-703

[23]

Christensen N I, Mooney W D. Seismic Velocity Structure and Composition of the Continental Crust: A Global View. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 9761-9788

[24]

Copley A, Avouac J P, Wernicke B P. Evidence for Mechanical Coupling and Strong Indian Lower Crust beneath Southern Tibet. Nature, 2011, 472(7341): 79-81

[25]

Cordier P, Raterron P, Wang Y. TEM Investigation of Dislocation Microstructure of Experimentally Deformed Silicate Garnet. Physics of the Earth and Planetary Interiors, 1996, 97(1/2/3/4): 121-131

[26]

Deng Y F, Tesauro M. Lithospheric Strength Variations in Mainland China: Tectonic Implications. Tectonics, 2016, 35(10): 2313-2333

[27]

Dilek Y, Robinson P T. Mantle Dynamics and Crust-Mantle Interactions in Collisional Orogens. Lithos, 2009, 113(1/2): viii-x

[28]

Dimanov A, Dresen G. Rheology of Synthetic Anorthite-Diopside Aggregates: Implications for Ductile Shear Zones. Journal of Geophysical Research, 2005, 110(B7): B07203

[29]

Dimanov A, Dresen G, Xiao X, . Grain Boundary Diffusion Creep of Synthetic Anorthite Aggregates: The Effect of Water. Journal of Geophysical Research: Solid Earth, 1999, 104 B5 10483-10497

[30]

Dimanov A, Lavie M P, Dresen G, . Creep of Polycrystalline Anorthite and Diopside. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 39-55

[31]

Dumond G, Goncalves P, Williams M L, . Subhorizontal Fabric in Exhumed Continental Lower Crust and Implications for Lower Crustal Flow: Athabasca Granulite Terrane, Western Canadian Shield. Tectonics, 2010, 29(2): TC2006

[32]

Endrun B, Lebedev S, Meier T, . Complex Layered Deformation within the Aegean Crust and Mantle Revealed by Seismic Anisotropy. Nature Geoscience, 2011, 4 3 203-207

[33]

Faul U H, Cline C J II, David E C, . Titanium-Hydroxyl Defect-Controlled Rheology of the Earth’s Upper Mantle. Earth and Planetary Science Letters, 2016, 452: 227-237.

[34]

Fei H Z, Wiedenbeck M, Yamazaki D, . Small Effect of Water on Upper-Mantle Rheology Based on Silicon Self-Diffusion Coefficients. Nature, 2013, 498(7453): 213-215

[35]

Flesch L, Holt W, Silver P, . Constraining the Extent of Crust-Mantle Coupling in Central Asia Using GPS, Geologic, and Shear Wave Splitting Data. Earth and Planetary Science Letters, 2005, 238(1/2): 248-268

[36]

Frost B R, Bucher K. Is Water Responsible for Geophysical Anomalies in the Deep Continental Crust? A Petrological Perspective. Tectonophysics, 1994, 231(4): 293-309

[37]

Gerya T V. Precambrian Geodynamics: Concepts and Models. Gondwana Research, 2014, 25(2): 442-463

[38]

Getsinger A J, Hirth G, Stünitz H, . Influence of Water on Rheology and Strain Localization in the Lower Continental Crust. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2247-2264

[39]

Gleason G C, Tullis J. A Flow Law for Dislocation Creep of Quartz Aggregates Determined with the Molten Salt Cell. Tectonophysics, 1995, 247(1/2/3/4): 1-23

[40]

Godard G, van Roermund H L M. Deformation-Induced Clinopyroxene Fabrics from Eclogites. Journal of Structural Geology, 1995, 17(10): 1425-1443

[41]

Heidelbach F, Post A, Tullis J. Crystallographic Preferred Orientation in Albite Samples Deformed Experimentally by Dislocation and Solution Precipitation Creep. Journal of Structural Geology, 2000, 22(11/12): 1649-1661

[42]

Hier-Majumder S, Mei S H, Kohlstedt D L. Water Weakening of Clinopyroxenite in Diffusion Creep. Journal of Geophysical Research, 2005, 110(B7): 542-557

[43]

Hirth G, Kohlstedt D L. Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere. Earth and Planetary Science Letters, 1996, 144(1/2): 93-108

[44]

Hirth G, Kohlstedt D L. Eiler J. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. Inside the Subduction Factory, 2003, Washington, D. C., USA: American Geophysical Union, 83-105

[45]

Hirth G, Teyssier C, Dunlap J W. An Evaluation of Quartzite Flow Laws Based on Comparisons between Experimentally and Naturally Deformed Rocks. International Journal of Earth Sciences, 2001, 90(1): 77-87

[46]

Holt W E. Correlated Crust and Mantle Strain Fields in Tibet. Geology, 2000, 28(1): 67

[47]

Homburg J M, Hirth G, Kelemen P B. Investigation of the Strength Contrast at the Moho: A Case Study from the Oman Ophiolite. Geology, 2010, 38 8 679-682

[48]

Ingrin J, Skogby H. Hydrogen in Nominally Anhydrous Upper-Mantle Minerals: Concentration Levels and Implications. European Journal of Mineralogy, 2000, 12(3): 543-570

[49]

Jackson J. Faulting, Flow, and the Strength of the Continental Lithosphere. International Geology Review, 2002, 44(1): 39-61

[50]

Jackson J. Strength of the Continental Lithosphere: Time to Abandon the Jelly Sandwich?. GSA Today, 2002, 12(9): 4

[51]

Ji S C, Jiang Z, Wirth R. Crystallographic Preferred Orientation (CPO) of Experimentally Sheared Plagioclase Aggregates: Implications for Crustal Heterogeneity. AGU Fall Meeting, San Francisco, 1999, 80: F916

[52]

Ji S C, Mainprice D. Natural Deformation Fabrics of Plagioclase: Implications for Slip Systems and Seismic Anisotropy. Tectonophysics, 1988, 147 1/2 145-163

[53]

Ji S C, Mainprice D, Boudier F. Sense of Shear in High-Temperature Movement Zones from the Fabric Asymmetry of Plagioclase Feldspars. Journal of Structural Geology, 1988, 10(1): 73-81

[54]

Ji S C, Martignole J. Ductility of Garnet as an Indicator of Extremely High Temperature Deformation. Journal of Structural Geology, 1994, 16(7): 985-996

[55]

Ji S C, Saruwatari K, Mainprice D, . Microstructures, Petrofabrics and Seismic Properties of Ultra High-Pressure Eclogites from Sulu Region, China: Implications for Rheology of Subducted Continental Crust and Origin of Mantle Reflections. Tectonophysics, 2003, 370(1/2/3/4): 49-76

[56]

Ji S C, Wirth R, Rybacki E, . High-Temperature Plastic Deformation of Quartz-Plagioclase Multilayers by Layer-Normal Compression. Journal of Geophysical Research: Solid Earth, 2000, 105(B7): 16651-16664

[57]

Jin Z M, Zhang J F, Green H W II, . Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 2001, 29(8): 667-670

[58]

Johnson T E, Brown M, Gardiner N J, . Earth’s First Stable Continents did not Form by Subduction. Nature, 2017, 543(7644): 239-242

[59]

Kanagawa K, Shimano H, Hiroi Y. Mylonitic Deformation of Gabbro in the Lower Crust: A Case Study from the Pankenushi Gabbro in the Hidaka Metamorphic Belt of Central Hokkaido, Japan. Journal of Structural Geology, 2008, 30(9): 1150-1166

[60]

Karato S I. The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle. Nature, 1990, 347(6290): 272-273

[61]

Karato S I. Rheology of the Deep Upper Mantle and Its Implications for the Preservation of the Continental Roots: A Review. Tectonophysics, 2010, 481(1/2/3/4): 82-98

[62]

Karato S I, Wang Z C, Liu B F, . Plastic Deformation of Garnets: Systematics and Implications for the Rheology of the Mantle Transition Zone. Earth and Planetary Science Letters, 1995, 130(1/2/3/4): 13-30

[63]

Katayama I, Karato S I. Effects of Water and Iron Content on the Rheological Contrast between Garnet and Olivine. Physics of the Earth and Planetary Interiors, 2008, 166(1/2): 57-66

[64]

Kennedy B M, van Soest M C. Flow of Mantle Fluids through the Ductile Lower Crust: Helium Isotope Trends. Science, 2007, 318(5855): 1433-1436

[65]

Kim D, Kim T, Lee J, . Microfabrics of Omphacite and Garnet in Eclogite from the Lanterman Range, Northern Victoria Land, Antarctica. Geosciences Journal, 2018, 22(6): 939-953

[66]

Kleinschrodt R, Duyster J P. HT-Deformation of Garnet: An EBSD Study on Granulites from Sri Lanka, India and the Ivrea Zone. Journal of Structural Geology, 2002, 24(11): 1829-1844

[67]

Kleinschrodt R, McGrew A. Garnet Plasticity in the Lower Continental Crust: Implications for Deformation Mechanisms Based on Microstructures and SEM-Electron Channeling Pattern Analysis. Journal of Structural Geology, 2000, 22(6): 795-809

[68]

Kohlstedt D L, Evans B, Mackwell S J. Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 17587-17602

[69]

Kruse R, Stünitz H. Deformation Mechanisms and Phase Distribution in Mafic High-Temperature Mylonites from the Jotun Nappe, Southern Norway. Tectonophysics, 1999, 303(1/2/3/4): 223-249

[70]

Kruse R, Stünitz H, Kunze K. Dynamic Recrystallization Processes in Plagioclase Porphyroclasts. Journal of Structural Geology, 2001, 23(11): 1781-1802

[71]

Kushiro I. Effect of Water on the Composition of Magmas Formed at High Pressures. Journal of Petrology, 1972, 13(2): 311-334

[72]

Le Breton E, Handy M R, Molli G, . Post-20 Ma Motion of the Adriatic Plate: New Constraints from Surrounding Orogens and Implications for Crust-Mantle Decoupling. Tectonics, 2017, 36(12): 3135-3154

[73]

Lund M D, Piazolo S, Harley S L. Ultrahigh Temperature Deformation Microstructures in Felsic Granulites of the Napier Complex, Antarctica. Tectonophysics, 2006, 427(1/2/3/4): 133-151

[74]

Mackwell S J, Zimmerman M E, Kohlstedt D L. High-Temperature Deformation of Dry Diabase with Application to Tectonics on Venus. Journal of Geophysical Research: Solid Earth, 1998, 103(B1): 975-984

[75]

Maggi A, Jackson J A, McKenzie D, . Earthquake Focal Depths, Effective Elastic Thickness, and the Strength of the Continental Lithosphere. Geology, 2000, 28(6): 495-498

[76]

Maggi A, Jackson J A, Priestley K, . A Re-Assessment of Focal Depth Distributions in Southern Iran, the Tien Shan and Northern India: Do Earthquakes Really Occur in the Continental Mantle?. Geophysical Journal International, 2000, 143(3): 629-661

[77]

Magni V, Faccenna C, van Hunen J, . Delamination vs. Break-off: The Fate of Continental Collision. Geophysical Research Letters, 2013, 40(2): 285-289

[78]

Mainprice D, Bascou J, Cordier P, . Crystal Preferred Orientations of Garnet: Comparison between Numerical Simulations and Electron Back-Scattered Diffraction (EBSD) Measurements in Naturally Deformed Eclogites. Journal of Structural Geology, 2004, 26(11): 2089-2102

[79]

Martelat J E, Schulmann K, Lardeaux J M, . Granulite Microfabrics and Deformation Mechanisms in Southern Madagascar. Journal of Structural Geology, 1999, 21(6): 671-687

[80]

Mauler A, Bystricky M, Kunze K, . Microstructures and Lattice Preferred Orientations in Experimentally Deformed Clinopyroxene Aggregates. Journal of Structural Geology, 2000, 22(11/12): 1633-1648

[81]

Mehl L, Hirth G. Plagioclase Preferred Orientation in Layered Mylonites: Evaluation of Flow Laws for the Lower Crust. Journal of Geophysical Research: Solid Earth, 2008, 113(B5): B05202

[82]

Mei S H, Kohlstedt D L. Influence of Water on Plastic Deformation of Olivine Aggregates: 1. Diffusion Creep Regime. Journal of Geophysical Research: Solid Earth, 2000, 105 B9 21457-21469

[83]

Mei S H, Kohlstedt D L. Influence of Water on Plastic Deformation of Olivine Aggregates: 2. Dislocation Creep Regime. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21471-21481

[84]

Meissner R, Mooney W. Weakness of the Lower Continental Crust: A Condition for Delamination, Uplift, and Escape. Tectonophysics, 1998, 296(1/2): 47-60

[85]

Meissner R, Rabbel W, Kern H. Seismic Lamination and Anisotropy of the Lower Continental Crust. Tectonophysics, 2006, 416(1/2/3/4): 81-99

[86]

Moghadam R H, Trepmann C A, Stöckhert B, . Rheology of Synthetic Omphacite Aggregates at High Pressure and High Temperature. Journal of Petrology, 2010, 51(4): 921-945

[87]

Montardi Y, Mainprice D. A Transmission Electron Microscopic Study of Natural Plastic Deformation of Calcic Plagioclases (An 68–70). Bulletin de Minéralogie, 1987, 110(1): 1-14

[88]

Moschetti M P, Ritzwoller M H, Lin F, . Seismic Evidence for Widespread Western-US Deep-Crustal Deformation Caused by Extension. Nature, 2010, 464(7290): 885-889

[89]

Muramoto M, Michibayashi K, Ando J I, . Rheological Contrast between Garnet and Clinopyroxene in the Mantle Wedge: An Example from Higashi-Akaishi Peridotite Mass, SW Japan. Physics of the Earth and Planetary Interiors, 2011, 184(1/2): 14-33

[90]

Olsen T S, Kohlstedt D L. Analysis of Dislocations in some Naturally Deformed Plagioclase Feldspars. Physics and Chemistry of Minerals, 1984, 11(4): 153-160

[91]

Orzol J, Stöckhert B, Trepmann C A, . Experimental Deformation of Synthetic Wet Jadeite Aggregates. Journal of Geophysical Research: Solid Earth, 2006, 111(B6): B06205

[92]

Park M, Jung H. Relationships between Eclogite-Facies Mineral Assemblages, Deformation Microstructures, and Seismic Properties in the Yuka Terrane, North Qaidam Ultrahigh-Pressure Metamorphic Belt, NW China. Journal of Geophysical Research: Solid Earth, 2019, 124 12 13168-13191

[93]

Percival J A, Fountain D M, Salisbury M H. Fountain D, Arculus R, Kay R W. Exposed Cross Sections as Windows on the Lower Crust. Continental Lower Crust, 1992, Amsterdam: Elsevier, 317-362.

[94]

Petley-Ragan A, Ben-Zion Y, Austrheim H, . Dynamic Earthquake Rupture in the Lower Crust. Science Advances, 2019, 5(7): eaaw0913

[95]

Puelles P, Ábalos B, Gil Ibarguchi J I. Transposed High-Pressure Granulite Fabrics (Cabo Ortegal, NW Spain): Implications on the Scales of Deformation Localization. Journal of Structural Geology, 2009, 31 8 776-790

[96]

Raleigh C B, Kirby S H, Carter N L, . Slip and the Clinoenstatite Transformation as Competing Rate Processes in Enstatite. Journal of Geophysical Research, 1971, 76(17): 4011-4022

[97]

Ranalli G. Rheology of the Crust and Its Role in Tectonic Reactivation. Journal of Geodynamics, 2000, 30(1/2): 3-15

[98]

Ranalli G, Murphy D C. Rheological Stratification of the Lithosphere. Tectonophysics, 1987, 132(4): 281-295

[99]

Raterron P, Doukhan N, Jaoul O, . High Temperature Deformation of Diopside IV: Predominance of {110} Glide above 1 000 °C. Physics of the Earth and Planetary Interiors, 1994, 82(3/4): 209-222

[100]

Reyners M, Eberhart-Phillips D, Stuart G. The Role of Fluids in Lower-Crustal Earthquakes near Continental Rifts. Nature, 2007, 446(7139): 1075-1078

[101]

Ross J V, Nielsen K C. High-Temperature Flow of Wet Polycrystalline Enstatite. Tectonophysics, 1978, 44(1/2/3/4): 233-261

[102]

Royden L. Coupling and Decoupling of Crust and Mantle in Convergent Orogens: Implications for Strain Partitioning in the Crust. Journal of Geophysical Research: Solid Earth, 1996, 101(B8): 17679-17705

[103]

Rudnick R L, Fountain D M. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 1995, 33(3): 267-309

[104]

Rudnick R L, Gao S. Rudnick R L. Composition of the Continental Crust. Treatise in Geochemistry: The Crust, 2003, Amsterdam: Elsevier, 1-64

[105]

Rybacki E, Dresen G. Dislocation and Diffusion Creep of Synthetic Anorthite Aggregates. Journal of Geophysical Research: Solid Earth, 2000, 105(B11): 26017-26036

[106]

Rybacki E, Gottschalk M, Wirth R, . Influence of Water Fugacity and Activation Volume on the Flow Properties of Fine-Grained Anorthite Aggregates. Journal of Geophysical Research: Solid Earth, 2006, 111(B3): B03203

[107]

Satsukawa T, Ildefonse B, Mainprice D, . A Database of Plagioclase Crystal Preferred Orientations (CPO) and Microstructures—Implications for CPO Origin, Strength, Symmetry and Seismic Anisotropy in Gabbroic Rocks. Solid Earth, 2013, 4 2 511-542

[108]

Shapiro N M, Ritzwoller M H, Molnar P, . Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy. Science, 2004, 305(5681): 233-236

[109]

Shelton G, Tullis J. Experimental Flow Laws for Crustal Rocks. EOS. Trans. Am. Geophys. Union, 1981, 62: 396

[110]

Shi F, Wang Y B, Yu T, . Lower-Crustal Earthquakes in Southern Tibet are Linked to Eclogitization of Dry Metastable Granulite. Nature Communications, 2018, 9(1): 3483

[111]

Shi F, Wang Y F, Xu H J, . Effects of Lattice Preferred Orientation and Retrogression on Seismic Properties of Eclogite. Journal of Earth Science, 2010, 21 5 569-580

[112]

Skogby H, Bell D R, Rossman G R. Hydroxide in Pyroxene: Variations in the Natural Environment. American Mineralogist, 1990, 75(7): 764-774

[113]

Soret M, Agard P, Ildefonse B, . Deformation Mechanisms in Mafic Amphibolites and Granulites: Record from the Semail Metamorphic Sole during Subduction Infancy. Solid Earth, 2019, 10(5): 1733-1755

[114]

Stockhert B, Renner J. Hacker B, Liou J-G. Rheology of Crustal Rocks at Ultrahigh Pressure. When Continents Collide: Geodynamics and Geochemstry of Ultrahigh-Pressure Rocks, 1998, New York: Springer, 57-95.

[115]

Stünitz H, Gerald J D F, Tullis J. Dislocation Generation, Slip Systems, and Dynamic Recrystallization in Experimentally Deformed Plagioclase Single Crystals. Tectonophysics, 2003, 372(3): 215-233

[116]

Stünitz H, Tullis J. Weakening and Strain Localization Produced by Syn-Deformational Reaction of Plagioclase. International Journal of Earth Sciences, 2001, 90(1): 136-148

[117]

Tullis J, Shelton G L, Yund R A. Pressure Dependence of Rock Strength: Implications for Hydrolytic Weakening. Bulletin de Minéralogie, 1979, 102(2): 110-114

[118]

Tullis J, Yund R A. Hydrolytic Weakening of Experimentally Deformed Westerly Granite and Hale Albite Rock. Journal of Structural Geology, 1980, 2(4): 439-451

[119]

Tullis J, Yund R A. Diffusion Creep in Feldspar Aggregates: Experimental Evidence. Journal of Structural Geology, 1991, 13(9): 987-1000

[120]

Tullis J, Yund R, Farver J. Deformation-Enhanced Fluid Distribution in Feldspar Aggregates and Implications for Ductile Shear Zones. Geology, 1996, 24(1): 63-66

[121]

Voegelé V, Ando J I, Cordier P, . Plastic Deformation of Silicate Garnets: I. High-Pressure Experiments. Physics of the Earth and Planetary Interiors, 1998, 108(4): 305-318

[122]

Wang Q. A Review of Water Contents and Ductile Deformation Mechanisms of Olivine: Implications for the Lithosphere-Asthenosphere Boundary of Continents. Lithos, 2010, 120(1/2): 30-41

[123]

Wang Y F, Zhang J F, Jin Z M, . Mafic Granulite Rheology: Implications for a Weak Continental Lower Crust. Earth and Planetary Science Letters, 2012, 353/354: 99-107.

[124]

Wang Z C, Ji S C. Deformation of Silicate Garnets: Brittle-Ductile Transition and Its Geological Implications. The Canadian Mineralogist, 1999, 37(2): 525-541

[125]

Wang Z C, Ji S C. Diffusion Creep of Fine-Grained Garnetite: Implications for the Flow Strength of Subducting Slabs. Geophysical Research Letters, 2000, 27(15): 2333-2336

[126]

Wang Z S, Kusky T M, Capitanio F. On the Role of Lower Crust and Midlithosphere Discontinuity for Cratonic Lithosphere Delamination and Recycling. Geophysical Research Letters, 2018, 45(15): 7425-7433

[127]

Wilks K R, Carter N L. Rheology of some Continental Lower Crustal Rocks. Tectonophysics, 1990, 182(1/2): 57-77

[128]

Xia Q K, Yang X Z, Deloule E, . Water in the Lower Crustal Granulite Xenoliths from Nushan, Eastern China. Journal of Geophysical Research: Solid Earth, 2006, 111(B11): B11202

[129]

Xiao M, Yao Y J, Cai Y, . Evidence of Early Cretaceous Lower Arc Crust Delamination and Its Role in the Opening of the South China Sea. Gondwana Research, 2019, 76: 123-145

[130]

Xie Y X, Wenk H R, Matthies S. Plagioclase Preferred Orientation by TOF Neutron Diffraction and SEM-EBSD. Tectonophysics, 2003, 370(1/2/3/4): 269-286

[131]

Xie Z J, Liu X W, Jin Z M. Effect of Water on the Dislocation Mobility in Garnet: Evidence from the Shuanghe UHP Eclogites, Dabie Orogen, China. Physics of the Earth and Planetary Interiors, 2019, 293 106273

[132]

Xu L L, Mei S H, Dixon N, . Effect of Water on Rheological Properties of Garnet at High Temperatures and Pressures. Earth and Planetary Science Letters, 2013, 379 158-165.

[133]

Yang G C, Yang X Z, Xia Q K. Water Evolution in the Lower Crust: Evidences from Plagioclase in Granulite in Different Eras. Acta Petrologica et Mineralogica, 2012, 31(4): 565-577. (in Chinese with English Abstract)

[134]

Yang X Z, Deloule E, Xia Q K, . Water Contrast between Precambrian and Phanerozoic Continental Lower Crust in Eastern China. Journal of Geophysical Research, 2008, 113: 194-205.

[135]

Yardley B W D, Valley J W. The Petrologic Case for a Dry Lower Crust. Journal of Geophysical Research: Solid Earth, 1997, 102(B6): 12173-12185

[136]

Zertani S, John T, Tilmann F, . Modification of the Seismic Properties of Subducting Continental Crust by Eclogitization and Deformation Processes. Journal of Geophysical Research: Solid Earth, 2019, 124(9): 9731-9754

[137]

Zhai M G, Fan Q C, Zhang H F, . Lower Crustal Processes Leading to Mesozoic Lithospheric Thinning beneath Eastern North China: Underplating, Replacement and Delamination. Lithos, 2007, 96(1/2): 36-54

[138]

Zhang G N, Mei S H, Song M S, . Diffusion Creep of Enstatite at High Pressures under Hydrous Conditions. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 7718-7728

[139]

Zhang J F, Green H W II. Experimental Investigation of Eclogite Rheology and Its Fabrics at High Temperature and Pressure. Journal of Metamorphic Geology, 2007, 25(2): 97-115

[140]

Zhang J F, Green H W II, Bozhilov K N. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth and Planetary Science Letters, 2006, 246(3/4): 432-443

[141]

Zhang J F, Wang C, Wang Y F. Experimental Constraints on the Destruction Mechanism of the North China Craton. Lithos, 2012, 149: 91-99.

[142]

Zhang L, Ye Y, Qin S, . Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1040-1048

[143]

Zhang L, Zhang J F, Jin Z M. Metamorphic P-T-Water Conditions of the Yushugou Granulites from the Southeastern Tianshan Orogen: Implications for Paleozoic Accretionary Orogeny. Gondwana Research, 2016, 29(1): 264-277

[144]

Zhang P Z, Shen Z K, Wang M, . Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 2004, 32(9): 809-812

[145]

Zhao C C, Yoshino T. Electrical Conductivity of Mantle Clinopyroxene as a Function of Water Content and Its Implication on Electrical Structure of Uppermost Mantle. Earth and Planetary Science Letters, 2016, 447: 1-9.

[146]

Zhou Y S, He C R. Microstructures and Deformation Mechanisms of Experimentally Deformed Gabbro. Earthquake Science, 2015, 28(2): 119-127

[147]

Zhou Y S, Rybacki E, Wirth R, . Creep of Partially Molten Fine-Grained Gabbro under Dry Conditions. Journal of Geophysical Research: Solid Earth, 2012, 117(B5): B05204

[148]

Zoback M D, Zoback M L, Mount V S, . New Evidence on the State of Stress of the San Andreas Fault System. Science, 1987, 238 4830 1105-1111

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/