Zircon U-Pb Geochronology Recorded Late Cretaceous Fluid Activation in the Central Aldan Gold Ore District, Aldan Shield, Russia: First Data

Vasilii I. Leontev , Sergey G. Skublov , Nadezhda V. Shatova , Alexey V. Berezin

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 481 -491.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 481 -491. DOI: 10.1007/s12583-020-1304-z
Mineral Deposits

Zircon U-Pb Geochronology Recorded Late Cretaceous Fluid Activation in the Central Aldan Gold Ore District, Aldan Shield, Russia: First Data

Author information +
History +
PDF

Abstract

The gold mineralization in the Central Aldan ore district is genetically related to potassic calc-alkaline and alkaline magmatism dated at 115–150 Ma. The objective of this study is to establish the age of hydrothermal processes that accompanied the formation of Au-Te mineralization at the Samolazovsky Deposit. Based on the isotope-geochemical study of zircons from quartz-feldspar metasomatic rocks of the deposit, the granitoids and charnokites of the Nimnyr Complex (1 900–1 960 Ma) at the contact with the Yukhta monzonite-syenite massif (∼127 Ma) were studied. Zircon U-Pb dating was performed on a SHRIMP-II ion microprobe, and rare-earth and trace elements analyses of zircon were carried out in the same craters by secondary-ion mass spectrometry on a Cameca IMS-4f ion microprobe. It is revealed that the studied zircons have heterogeneous structures: dark core and lighter rim, which differ greatly in isotope-geochemical parameters. Zircon rims are cut by a network of fractures, extending into the central part of zircon grains. The rims yield a subconcordant age of 1 937±24 Ma, with an average total REE content of 550 ppm, which corresponds to the formation age of the Nimnyr Complex. All zircon cores yield a discordant age of 83±11 Ma and are characterized by a higher total REE content (∼1 812 ppm), as well as higher contents of U and non-formula elements (Ca, Sr, and Y) with respect to rims, due to the effect of fluid on zircons. Despite the limited number of zircon grains, the additional geochronological study of zircons from syenites of the ore-bearing Ryabinovy Massif has revealed the presence of two distinct age clusters: ∼125–138 and 76–83 Ma. The older ages of zircons from syenites are typical for the Central Aldan ore district. Until now, there is still no explanation for an age range (76–83 Ma) of single zircon grains from ore-bearing syenites of the Ryabinovy Massif. The obtained data suggest that the processes of activation (the effect of fluid) within the Central Aldan ore district continued until Late Mesozoic. With regards to the equivocal geotectonic position of the Mesozoic potassic magmatism in the study area and its high metallogenic potential, there exists an absolute necessity to determine the geochronological age of the rock formations. Therefore this study presents the Late Cretaceous geochronological data for the first time which can constrain the time-frame for the formation of gold-bearing magmatic and metasomatic rocks of the Aldan ore district.

Keywords

U-Pb geochronology / REE geochemistry / zircon / Samolazovskoe Deposit / Ryabinovoe Deposit / Aldan Shield

Cite this article

Download citation ▾
Vasilii I. Leontev, Sergey G. Skublov, Nadezhda V. Shatova, Alexey V. Berezin. Zircon U-Pb Geochronology Recorded Late Cretaceous Fluid Activation in the Central Aldan Gold Ore District, Aldan Shield, Russia: First Data. Journal of Earth Science, 2020, 31(3): 481-491 DOI:10.1007/s12583-020-1304-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belousova E, Griffin W, O’Reilly S Y, . Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

[2]

Black L P, Kamo S L, Allen C M, . TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 2003, 200(1/2): 155-170.

[3]

Borisenko I D, Borovikov A A, Borisenko A S, . Physicochemical Conditions of Ore Formation in the Samolazovskoe Gold Deposit (Central Aldan). Russian Geology and Geophysics, 2017, 58(12): 1518-1529.

[4]

Bröcker M, Löwen K, Rodionov N. Unraveling Protolith Ages of Meta-Gabbros from Samos and the Attic-Cycladic Crystalline Belt, Greece: Results of a U-Pb Zircon and Sr-Nd Whole Rock Study. Lithos, 2014, 1: 234-248.

[5]

Dokukina K A, Kaulina T V, Konilov A N, . Archaean to Palaeoproterozoic High-Grade Evolution of the Belomorian Eclogite Province in the Gridino Area, Fennoscandian Shield: Geochronological Evidence. Gondwana Research, 2014, 25(2): 585-613.

[6]

Fedotova A A, Bibikova E V, Simakin S G. Ion-Microprobe Zircon Geochemistry as an Indicator of Mineral Genesis during Geochronological Studies. Geochemistry International, 2008, 46(9): 912-927.

[7]

Fu B, Mernagh T P, Kita N T, . Distinguishing Magmatic Zircon from Hydrothermal Zircon: A Case Study from the Gidginbung High-Sulphidation Au-Ag-(Cu) Deposit, SE Australia. Chemical Geology, 2009, 259(3/4): 131-142.

[8]

Geisler T, Schleicher H. Improved U-Th-Total Pb Dating of Zircons by Electron Microprobe Using a Simple New Background Modeling Procedure and Ca as a Chemical Criterion of Fluid-Induced U-Th-Pb Discordance in Zircon. Chemical Geology, 2000, 163(1/2/3/4): 269-285.

[9]

Glebovitskii V A, Sedova I S, Berezhnaya N G, . Isotope-Geochronological Timing of Metamorphic Events in the Boundary Zone between the Aldan Shield and the Dzhugdzhuro-Stanovoi Folded Area. Doklady Earth Sciences, 2010, 430(1): 34-39.

[10]

Glebovitskii V A, Sedova I S, Berezhnaya N G, . U-Pb Age of Autochthonous Paleoproterozoic Charnockite in the Aldan Shield. Doklady Earth Sciences, 2012, 443(2): 451-457.

[11]

Glebovitskii V A, Sedova I S, Berezhnaya N G, . New Data on the Age of Ultrametamorphic Granitoids of the Aldan Granulite Area (Eastern Siberia), Consequences of Metamorphic Processes and Possibilities of Regional Correlations of Geological Events. Stratigraphy and Geological Correlation, 2012, 20(2): 139-165.

[12]

Hinton R W, Upton B G J. The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths. Geochimica et Cosmochimica Acta, 1991, 55(11): 3287-3302.

[13]

Jiang W C, Li H, Evans N J, . Zircon Records Multiple Magmatic-Hydrothermal Processes at the Giant Shizhuyuan W-Sn-Mo-Bi Polymetallic Deposit, South China. Ore Geology Reviews, 2019, 1 103160

[14]

Jochum K P, Dingwell D B, Rocholl A, . The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for in-situ Microanalysis. Geostandards and Geoanalytical Research, 2000, 24(1): 87-133.

[15]

Jochum, K. P., Stoll, B., Herwig, K., et al., 2006. MPI-DING Reference Glasses for in situ Microanalysis: New Reference Values for Element Concentrations and Isotope Ratios. Geochemistry, Geophysics, Geosystems, 7(2). https://doi.org/10.1029/2005gc001060

[16]

Kazansky V I. The Unique Central Aldan Gold-Uranium Ore District (Russia). Geology of Ore Deposits, 2004, 1: 167-181.

[17]

Khomich V G, Boriskina N G, Santosh M. A Geodynamic Perspective of World-Class Gold Deposits in East Asia. Gondwana Research, 2014, 26(3/4): 816-833.

[18]

Khomich V G, Boriskina N G, Santosh M. Geodynamics of Late Mesozoic PGE, Au, and U Mineralization in the Aldan Shield, North Asian Craton. Ore Geology Reviews, 2015, 1: 30-42.

[19]

Kononova V A, Pervov V A, Bogatikov O A, . Mesozoic Potassium-Rich Magmatism of the Central Aldan: Geodynamics and Genesis. Geotectonics, 1995, 1: 35-45.

[20]

Kukuschkin K A, Molchanov A V, Radkov V V, . Towards Differentiation of the Mesozoic Intrusive Rocks in the Central Aldan District (South Yakutia). Regional Geology and Metallogeny, 2015, 1: 48-58. (in Russian)

[21]

Leontev V I, Bushuev Y Y. Ore Mineralization in Adular-Fluorite Metasomatites: Evidence of the Podgolechnoe Alkalic-Type Epithermal Gold Deposit (Central Aldan Ore District, Russia). Key Engineering Materials, 2017, 1: 417-421.

[22]

Leontev V I, Bushuev Y Y, Chernigovtsev K A. Samolazovskoe Gold Deposit (Central Aldan Ore District): Geological Structure and Mineralization of Deep Horizons. Regional Geology and Metallogeny, 2018, 1: 90-103. (in Russian)

[23]

Leontev V I, Chernigovtsev K. Ore Mineralization of the Epithermal Samolazovskoe Gold-Ore Deposit, Aldan Shield (Russia). Key Engineering Materials, 2018, 1: 213-219.

[24]

Li G M, Qin K Z, Li J X, . Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet: Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 2017, 1: 110-127.

[25]

Li H, Li J W, Algeo T J, . Zircon Indicators of Fluid Sources and Ore Genesis in a Multi-Stage Hydrothermal System: The Dongping Au Deposit in North China. Lithos, 2018, 314/1: 463-478.

[26]

Li H, Myint A Z, Yonezu K, . Geochemistry and U-Pb Geochronology of the Wagone and Hermyingyi A-Type Granites, Southern Myanmar: Implications for Tectonic Setting, Magma Evolution and Sn-W Mineralization. Ore Geology Reviews, 2018, 1: 575-592.

[27]

Li H, Wu J H, Evans N J, . Zircon Geochronology and Geochemistry of the Xianghualing A-Type Granitic Rocks: Insights into Multi-Stage Sn-Polymetallic Mineralization in South China. Lithos, 2018, 312/1: 1-20.

[28]

Li H, Cao J Y, Algeo T J, . Zircons Reveal Multi-Stage Genesis of the Xiangdong (Dengfuxian) Tungsten Deposit, South China. Ore Geology Reviews, 2019, 1 102979

[29]

Li H, Sun H S, Algeo T J, . Mesozoic Multi-Stage W-Sn Polymetallic Mineralization in the Nanling Range, South China: An Example from the Dengfuxian-Xitian Ore Field. Geological Journal, 2019, 54(6): 3755-3785.

[30]

Li H, Sun H S, Evans N J, . Geochemistry and Geochronology of Zircons from Granite-Hosted Gold Mineralization in the Jiaodong Peninsula, North China: Implications for Ore Genesis. Ore Geology Reviews, 2019, 1 103188

[31]

Li H, Zhou Z K, Evans N J, . Fluid-Zircon Interaction during Low-Temperature Hydrothermal Processes: Implications for the Genesis of the Banxi Antimony Deposit, South China. Ore Geology Reviews, 2019, 1 103137

[32]

Ludwig K R. SQUID 1.02, A User Manual, A Geochronological Toolkit for Microsoft Excel, 2001, Berkeley: Berkeley Geochronology Center Spec. Publ.

[33]

Ludwig K R. User’s Manual for Isoplot/Ex, Version 3.00, A Geochronological Toolkit for Microsoft Excel, 2003, Berkeley: Berkeley Geochronology Center Spec. Publ.

[34]

Maximov E P, Uyutov V I, Nikitin V M. The Central Aldan Gold-Uranium Ore Magmatogenic System, Aldan-Stanovoy Shield, Russia. Russian Journal of Pacific Geology, 2010, 4(2): 95-115.

[35]

McDonough W F, Sun S S. The Composition of the Earth. Chemical Geology, 1995, 120(3/4): 223-253.

[36]

Page F Z, Fu B, Kita N T, . Zircons from Kimberlite: New Insights from Oxygen Isotopes, Trace Elements, and Ti in Zircon Thermometry. Geochimica et Cosmochimica Acta, 2007, 71(15): 3887-3903.

[37]

Pelleter E, Cheilletz A, Gasquet D, . Hydrothermal Zircons: A Tool for Ion Microprobe U-Pb Dating of Gold Mineralization (Tamlalt-Menhouhou Gold Deposit—Morocco). Chemical Geology, 2007, 245(3/4): 135-161.

[38]

Polin V F, Glebovitskii V A, Mitsuk V V, . Two-Stage Formation of the Alcaline Volcano-Plutonic Complexes in the Ketkap-Yuna Igneous Province of the Aldan Shield: New Isotopic Data. Doklady Earth Sciences, 2014, 459(1): 1322-1327.

[39]

Polin V F, Mitsuk V V, Khanchuk A I, . Geochronological Limits of Subalkaline Magmatism in the Ket-Kap-Yuna Igneous Province, Aldan Shield. Doklady Earth Sciences, 2012, 442(1): 17-23.

[40]

Prokopyev I R, Doroshkevich A G, Ponomarchuk A V, . U-Pb SIMS and Ar-Ar Geochronology, Petrography, Mineralogy and Gold Mineralization of the Late Mesozoic Amga Alkaline Rocks (Aldan Shield, Russia). Ore Geology Reviews, 2019, 1: 520-534.

[41]

Prokopyev I R, Kravchenko A A, Ivanov A I, . Geochronology and Ore Mineralization of the Dzheltula Alkaline Massif (Aldan Shield, South Yakutia). Russian Journal of Pacific Geology, 2018, 12(1): 34-45.

[42]

Rocholl A B E, Simon K, Jochum K P, . Chemical Characterisation of NIST Silicate Glass Certified Reference Material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostandards Newsletter, 1997, 21(1): 101-114.

[43]

Rodionov N V, Belyatsky B V, Antonov A V, . Comparative in-situ U-Th-Pb Geochronology and Trace Element Composition of Baddeleyite and Low-U Zircon from Carbonatites of the Palaeozoic Kovdor Alkaline-Ultramafic Complex, Kola Peninsula, Russia. Gondwana Research, 2012, 21(4): 728-744.

[44]

Rodionov S M, Fredericksen R S, Berdnikov N V, . The Kuranakh Epithermal Gold Deposit (Aldan Shield, East Russia). Ore Geology Reviews, 2014, 1: 55-65.

[45]

Schaltegger U. Hydrothermal Zircon. Elements, 2007, 3(1): 51-79.

[46]

Shatov V V, Molchanov A V, Shatova N V, . Petrography, Geochemistry and Isotopic (U-Pb and Rb-Sr) Dating of Alkaline Magmatic Rocks of the Ryabinovy Massif (South Yakutia). Regional Geology and Metallogeny, 2012, 1: 62-78. (in Russian)

[47]

Shatova N V, Skublov S G, Melnik A E, . Geochronology of Alkaline Magmatic Rocks and Metasomatites of the Ryabinovy Stock (South Yakutia) Based on Zircon Isotopic and Geochemical (U-Pb, REE) Investigations. Regional Geology and Metallogeny, 2017, 1: 33-48. (in Russian)

[48]

Skublov S G, Berezin A V, Berezhnaya N G. General Relations in the Trace-Element Composition of Zircons from Eclogites with Implications for the Age of Eclogites in the Belomorian Mobile Belt. Petrology, 2012, 20(5): 427-449.

[49]

Soloviev S G. The Metallogeny of Shoshonitic Magmatism, 2014, Moscow: Scientific World, 472 Vol. 2

[50]

Terekhov A V, Molchanov A V, Shatov V V, . Fluid Characteristic of Formation Ore-Bearing Alteration Rocks of Elkon Gold-Uranium Ore Cluster. Journal of Mining Institute, 2013, 1: 321-326.

[51]

Ushikubo T, Kita N T, Cavosie A J, . Lithium in Jack Hills Zircons: Evidence for Extensive Weathering of Earth’s Earliest Crust. Earth and Planetary Science Letters, 2008, 272(3/4): 666-676.

[52]

Vetluzhskikh V G, Kazansky V I, Kochetkov A Y, . Central Aldan Gold Deposits. Geology of Ore Deposits, 2002, 1: 405-434.

[53]

Wang Y, He H Y, Ivanov A V, . Age and Origin of Charoitite, Malyy Murun Massif, Siberia, Russia. International Geology Review, 2014, 56(8): 1007-1019.

[54]

Watson E B, Wark D A, Thomas J B. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433.

[55]

Wiedenbeck M, Allé P, Corfu F, . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 1995, 19(1): 1-23.

[56]

Williams I S, McKibben M A, Shanks W C III, . U-Th-Pb Geochronology by Ion Microprobe. Reviews of Economic Geology, 1998, 1: 1-35. In: Applications of Microanalytical Techniques to Understanding Mineralizing Processes

[57]

Yang W B, Niu H C, Shan Q, . Geochemistry of Magmatic and Hydrothermal Zircon from the Highly Evolved Baerzhe Alkaline Granite: Implications for Zr-REE-Nb Mineralization. Mineralium Deposita, 2014, 49(4): 451-470.

[58]

Yarmolyuk V V, Nikiforov A V, Kozlovsky A M, . Late Mesozoic East Asian Magmatic Province: Structure, Magmatic Signature, Formation Conditions. Geotectonics, 2019, 53(4): 500-516.

[59]

Zhang L, Zhu J J, Xia B, . Metamorphism and Zircon Geochronological Studies of Metagabbro Vein in the Yushugou Granulite-Peridotite Complex from South Tianshan, China. Journal of Earth Science, 2019, 30(6): 1215-1229.

[60]

Zorin Y A, Turutanov E K. Plumes and Geodynamics of the Baikal Rift Zone. Russian Geology and Geophysics, 2005, 1: 685-699.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/