Composition of Pancarli Magmatic Ni-Cu±(PGE) Sulfide Deposit in the Cadomian-Avalonian Belt, Eastern Turkey

Esra Yildirim , Nail Yildirim , Cahit Dönmez , Kurtuluş Günay , Taner Korkmaz , Mustafa Akyildiz , Burcu Gören

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 536 -550.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 536 -550. DOI: 10.1007/s12583-020-1299-5
Mineral Deposits

Composition of Pancarli Magmatic Ni-Cu±(PGE) Sulfide Deposit in the Cadomian-Avalonian Belt, Eastern Turkey

Author information +
History +
PDF

Abstract

Pancarli Ni-Cu±(PGE) sulfide deposit occurs in the Neoproterozoic basement complex of the Bitlis massif, which is one of the Andean-type active continental margin fragments with arc-type assemblages represented by the Cadomian orogenic belt. Pancarli sulfides are associated with quartzo-feldspathic gneisses (country rock) and mafic intrusions (host rock). Composed of only semi-massive ore, the Ni-Cu±(PGE) sulfide deposit is a small-scale deposit, and it does not contain net-textured and disseminated ore. The mineral assemblage comprises pyrrhotite, pentlandite, and chalcopyrite. The semi-massive ore samples contain 2.2 wt.%−2.9 wt.% Ni, 0.8 wt.%−2.2 wt.% Cu (Cu/(Cu+Ni)=0.2−0.5) and 0.13 wt.%−0.17 wt.% Co. The Cu/Ni ratios (average 0.57) are consistent with the segregation of sulfides from a basaltic magma. Low Pt+Pd100%S values of 0.08 ppm−0.89 ppm, relatively low Pt/Pd ratios of 0.2–1.4, and Pd/Ir ratios of 4.5–39 have also been revealed. These values demonstrate that the magma reached S saturation before its emplacement and the mineralization with high Cu/Pd ratios formed by sulfides segregated from a PGE-depleted magma. δ34S isotope values (average −3.1‰) of Pancarli sulfides are lower than mantle source. Negative δ34S value indicates contamination from surrounding rocks. Concerning the composition, remobilization style and magma type, the Pancarli Ni-Cu±(PGE) sulfide deposit is similar to the deposits associated with Andean-type magmatic arcs located in the convergent plate margin settings.

Keywords

Ni-Cu±(PGE) sulfide deposit / δ34S isotopes / Neoproterozoic / Andean type / eastern Turkey

Cite this article

Download citation ▾
Esra Yildirim, Nail Yildirim, Cahit Dönmez, Kurtuluş Günay, Taner Korkmaz, Mustafa Akyildiz, Burcu Gören. Composition of Pancarli Magmatic Ni-Cu±(PGE) Sulfide Deposit in the Cadomian-Avalonian Belt, Eastern Turkey. Journal of Earth Science, 2020, 31(3): 536-550 DOI:10.1007/s12583-020-1299-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arndt, N. T., Lesher, C. M., Czamanske, G. K., 2005. Mantle-Derived Magmas and Magmatic Ni-Cu-PGE Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists. 5–24. https://doi.org/10.5382/av100.02

[2]

Barnes S-J, Couture J F, Sawyer E W, . Nickel-Copper Occurrences in the Belleterre-Angliers Belt of the Pontiac Subprovince and the Use of Cu-Pd Ratios in Interpreting Platinum-Group Element Distributions. Economic Geology, 1993, 88(6): 1402-1418.

[3]

Barnes S-J, Francis D. The Distribution of Platinum-Group Elements, Nickel, Copper, and Gold in the Muskox Layered Intrusion, Northwest Territories, Canada. Economic Geology, 1995, 90(1): 135-154.

[4]

Barnes S-J, Gole M J, Hill R E T. The Agnew Nickel Deposit, Western Australia; Part II, Sulfide Geochemistry, with Emphasis on the Platinum-Group Elements. Economic Geology, 1988, 83(3): 537-550.

[5]

Barnes, S.-J., Lightfoot, P. C., 2005. Formation of Magmatic Nickel Sulfide Ore Deposits and Processes Affecting Their Copper and Platinum Group Element Contents. Economic Geology. 100th Anniversary Volume. 179–213

[6]

Barnes S-J, Maier W D. The Fractionation of Ni, Cu, and the Noble Metals in Silicate and Sulphide Liquids. Geological Association of Canada Short Course Notes, 1999, 13: 69-106.

[7]

Barnes S-J, Makovicky E, Makovicky M, . Partition Coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between Monosulphide Solid Solution and Sulphide Liquid and the Formation of Compositionally Zoned Ni-Cu Sulphide Bodies by Fractional Crystallization of Sulphide Liquid. Canadian Journal of Earth Sciences, 1997, 34(4): 366-374.

[8]

Barnes S-J, Zientek M, Severson M J. Ni, Cu, Au and Platinum Group Element Contents of Sulfides Associated with Intraplate Magmatism: A Synthesis. Canadian Journal of Earth Sciences, 1997, 34(4): 337-351.

[9]

Barnes S-J, Naldrett A J, Gorton M P. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chemical Geology, 1985, 53(3/4): 303-323.

[10]

Barrett F M, Binns R A, Groves D I, . Structural History and Metamorphic Modification of Archean Volcanic-Type Nickel Deposits, Yilgarn Block, Western Australia. Economic Geology, 1977, 72(7): 1195-1223.

[11]

Bédard P, Barnes S-J. A Comparison of the Capacity of FAICP-MS and FA-INAA to Determine Platinum-Group Elements and Gold in Geological Samples. Journal of Radioanalytical and Nuclear Chemis, 2002, 254: 319-329.

[12]

Boer R H, Meyer F M, Cawthorn R G. Stable Isotopic Evidence for Crustal Contamination and Desulfidation of the Cupriferous Koperberg Suite, Namaqualand, South Africa. Geochimica et Cosmochimica Acta, 1994, 58(12): 2677-2687.

[13]

Boray A. The Structure and Metamorphism of the Bitlis Area, Southeast Turkey: [Dissertation], 1973, England: Londra University, 233.

[14]

Boyd R, Mathiesen C O. The Nickel Mineralization of the Rana Mafic Intrusion, Nordland, Norway. The Canadian Mineralogist, 1979, 17(2): 287-298.

[15]

Boyd R, McDade J M, Millard H T, . Platinium Metal Geochemistry of the Bruvann Nickel-Copper Deposit, Rána, North Norway. Norsk Geologisk Tidsskrift, Oslo, 1987, 67: 205-213.

[16]

Çağatay M N. The Pancarli Nickel-Copper Sulfide Mineralization, Eastern Turkey. Mineralium Deposita, 1987, 22(3): 163-171.

[17]

Casquet C, Galindo C, Tornos F, . The Aguablanca Cu-Ni Ore Deposit (Extremadura, Spain), a Case of Synorogenic Orthomagmatic Mineralization: Age and Isotope Composition of Magmas (Sr, Nd) and Ore (S). Ore Geology Reviews, 2001, 18(3/4): 237-250.

[18]

Cawthorn R G, Meyer F M. Petrochemistry of the Okiep Copper District Basic Intrusive Bodies, Northwestern Cape Province, South Africa. Economic Geology, 1993, 88(3): 590-605.

[19]

Crocket J H. Platinum-Group Element Geochemistry of Mafic and Ultramafic Rocks. Canadian Institute Mining Metallurgy and Petroleum, 2002, 54: 177-210.

[20]

Distler V V, Malesvsky A Y, Laputina I P. Distribution of Platinoids between Pyrrhotite and Pentlandite in Crystallization of a Sulfide Melt. Geochemica International, 1977, 14: 30-40.

[21]

Durazzo A, Taylor L A. Exsolution in the Mss-Pentlandite System: Textural and Genetic Implications for Ni-Sulfide Ores. Mineralium Deposita, 1982, 17(3): 313-332.

[22]

Eckstrand, O. R., Hulbert, L. J., 1987. Selenium and the Source of Sulfur in Magmatic Nickel and Platinum Deposits. Geol. Assoc. Can.-Min. Assoc. Can. Abstr. Programs 12. 40

[23]

Fleet M E, Chryssoulis S L, Stone W E, . Partitioning of Platinum-Group Elements and Au in the Fe-Ni-Cu-S System: Experiments on the Fractional Crystallization of Sulfide Melt. Contributions to Mineralogy and Petrology, 1993, 115(1): 36-44.

[24]

Genç S. Geological Evolution of the Southern Margin of the Bitlis Massif, Lice-Kulp District, SE Turkey: [Dissertation], 1977, Cardiff: Wales University, 281.

[25]

Genç S. Discussion on the Parent Problem of Gneisses and Amphibolites in the Lice-Kulp (Diyarbakir) and Çökekyazi-Gökay Areas of the Bitlis Massif. Geological Engineering, 1985, 23: 31-38.

[26]

Genç S. Petrography, Metamorphism, and Genesis of Metamorphics in the Çökekyazi Gökay (Hizan, Bitlis) Area of the Bitlis Massif. Geological Bulletin of Turkey, 1990, 33: 1-14.

[27]

Göncüoğlu M C, Turhan N. Tekeli O, Göncüoğlu M C. Geology of the Bitlis Metamorphic Belt. International Symposium on Geology of the Taurus Belt Proceedings, 1984, Ankara: Mineral Research and Exploration Institute of Turkey, 237-244.

[28]

Hall R. Ophiolite Emplacement and the Evolution of the Taurus Suture Zone, Southeastern Turkey. Geological Society of America Bulletin, 1976, 87 7 1078

[29]

Helvaci C, Griffin W L. Rb-Sr Geochronology of the Bitlis Massif, Avnik (Bingöl) Area, S.E. Turkey. Geological Society, London, Special Publications, 1984, 17(1): 403-413.

[30]

Hirano, H., Boyali, I., 1980. Geology of the Nickel-Copper Deposits in Pancarli Area (Bitlis Massif, Eastern Turkey). General Directorate of Mineral Research and Exploration Report No. 1746. 33 Ankara

[31]

Hoatson D M, Blake D H. Geology and Economic Potential of the Palaeoproterozoic Layered Mafic-Ultramafic Intrusions in the East Kimberley, Western Australia, 2000, Canberra: Australian Geological Survey Organization, 246-469.

[32]

Hoffman E L, Naldrett A J, Alcock R A, . The Noble Metal Content of Ore in the Levack West and Little Stobie Mines, Ontario. Canadian Mineralogist, 1979, 17: 437-451.

[33]

Huang S F, Wang W. Origin of the Fanjingshan Mafic-Ultramafic Rocks, Western Jiangnan Orogen, South China: Implications for PGE Fractionation and Mineralization. Journal of Earth Science, 2019, 30(2): 258-271.

[34]

Konnunaho J P, Hanski E J, Bekker A, . The Archean Komatiite-Hosted, PGE-Bearing Ni-Cu Sulfide Deposit at Vaara, Eastern Finland: Evidence for Assimilation of External Sulfur and Post-Depositional Desulfurization. Mineralium Deposita, 2013, 48(8): 967-989.

[35]

Li C, Barnes S-J, Makovicky E, . Partitioning of Nickel, Copper, Iridium, Rhenium, Platinum, and Palladium between Monosulphide Solid Solution and Sulphide Liquid: Effects of Composition and Temperature. Geochimica et Cosmochimica Acta, 1996, 60: 1231-1238.

[36]

Li C, Naldrett A J. Geology and Petrology of the Voisey’s Bay Intrusion: Reaction of Olivine with Silicate and Sulfide Liquids. Lithos, 1999, 47(1/2): 1-13.

[37]

Maier W D. Platinum-Group Elements in Cu-Sulphide Ores at Carolusberg and East Okiep, Namaqualand, South Africa. Mineralium Deposita, 2000, 35(5): 422-429.

[38]

Maier W D, Andreoli M A G, Groves D I, . Petrogenesis of Cu-Ni Sulphide Ores from O’okiep and Kliprand, Namaqualand, South Africa: Constraints from Chalcophile Metal Contents. South African Journal of Geology, 2012, 115(4): 499-514.

[39]

Maier W D, Barnes S-J. Unusually High Concentrations of Magnetite at Caraiba and Other Cu-Sulfide Deposits in the Curaçá Valley, Bahia, Brazil. The Canadian Mineralogist, 1996, 34: 717-731.

[40]

Maier W D, Barnes S-J. The Origin of Cu Sulfide Deposits in the Curaca Valley, Bahia, Brazil: Evidence from Cu, Ni, Se, and Platinum-Group Element Concentrations. Economic Geology, 1999, 94(2): 165-183.

[41]

Maier W D, Barnes S-J, Chinyepi G, . The Composition of Magmatic Ni-Cu-(PGE) Sulfide Deposits in the Tati and Selebi-Phikwe Belts of Eastern Botswana. Mineralium Deposita, 2008, 43(3): 373-373.

[42]

Makkonen H. Maier W D, O’Brien H, Lahtinen R. Ni Deposits of the Vammala and Kotalahti Belt. Mineral Deposits of Finland, 2015, Amsterdam: Elsevier, 253-285

[43]

Manor M J. Convergent Margin Ni-Cu-PGE Deposits: Geology, Geochronology, and Geochemistry of the Giant Mascot Magmatic Sulfide Deposit, Hope, British Columbia: [Dissertation], 2014, Vancouver: University of British Columbia, 371.

[44]

Mavrogenes J A, O’Neill H S C. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 1999, 63(7/8): 1173-1180.

[45]

McDonough W F, Sun S S. The Composition of the Earth. Chemical Geology, 1995, 120(3/4): 223-253.

[46]

MTA Geological Map of Turkey, Scale 1/500 000, 2002, Ankara: Mineral Research and Exploration

[47]

Mungall J E, Hanley J J, Arndt N T, . Evidence from Meimechites and Other Low-Degree Mantle Melts for Redox Controls on Mantle-Crust Fractionation of Platinum-Group Elements. Proceedings of the National Academy of Sciences, 2006, 103(34): 12695-12700.

[48]

Naldrett A J. Magmatic Sulphide Deposits. Oxford Monographs on Geology and Geophysics, 1989, New York, Oxford: Oxford University Press, 186 No. 14

[49]

Naldrett A J. Magmatic Sulfide Deposits, 2004, Berlin, Heidelberg, New York: Springer, 727

[50]

Naldrett A J, Asif M, Krstic S, . The Composition of Mineralization at the Voisey’s Bay Ni-Cu Sulfide Deposit, with Special Reference to Platinum-Group Elements. Economic Geology, 2000, 95(4): 845-865.

[51]

Oberhänsli R, Koralay E, Candan O, . Late Cretaceous Eclogitic High-Pressure Relics in the Bitlis Massif. Geodinamica Acta, 2013, 26(3/4): 175-190.

[52]

Ohmoto H. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy and Geochemistry, 1986, 16: 491-559. In: Valley J. W., Taylor, H. P. Jr., O’Neil, J. R., eds., Stable Isotopes in High Temperature Geological Processes

[53]

Okay A I, Arman M B, Göncüoğlu M C. Petrology and Phase Relations of the Kyanite-Eclogites from Eastern Turkey. Contributions to Mineralogy and Petrology, 1985, 91(2): 196-204.

[54]

Paktunc A D. Comparative Geochemistry of Platinum-Group Elements of Nickel-Copper Sulfide Occurrences Associated with Mafic-Ultramafic Intrusions in the Appalachian Orogen. Journal of Geochemical Exploration, 1990, 37(1): 101-111.

[55]

Peltonen P. Lehtinen M, Nurmi P A, Rämö O T. Mafic-Ultramafic Intrusions of the Svecofennian Orogeny. Precambrian of Finland—A Key to the Evolution of the Fennoscandian Shield, 2005, Amsterdam: Elsevier, 413-447.

[56]

Perinçek D. Volcanics of Triassic Age in Bitlis Metamorphic Rocks. Geological Bulletin of Turkey, 1980, 23: 201-211.

[57]

Piña R, Lunar R, Ortega L, . Petrology and Geochemistry of Mafic-Ultramafic Fragments from the Aguablanca Ni-Cu Ore Breccia, Southwest Spain. Economic Geology, 2006, 101(4): 865-881.

[58]

Queffurus M, Barnes S-J. A Review of Sulfur to Selenium Ratios in Magmatic Nickel-Copper and Platinum-Group Element Deposits. Ore Geology Reviews, 2015, 69: 301-324.

[59]

Ripley, E. M., 1999. Systematics of Sulphur and Oxygen Isotopes in Mafic Igneous Rocks and Related Cu-Ni-PGE Mineralization. In: Keays, R. R., Lesher, C. M., Lightfoot, P. C., et al., eds., Dynamic Processes in Magmatic Ore Deposits and Their Application in Mineral Exploration. Geological Association of Canada, Short Course Notes, Volume 13. 133–158

[60]

Ripley E M, Li C S. Sulfide Saturation in Mafic Magmas: Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis?. Economic Geology, 2013, 108(1): 45-58.

[61]

Ripley E M, Li C, Shin D. Paragneiss Assimilation in the Genesis of Magmatic Ni-Cu-Co Sulfide Mineralization at Voisey’s Bay, Labrador: 34S, 13C, and Se/S Evidence. Economic Geology, 2002, 97(6): 1307-1318.

[62]

Ripley E M, Lightfoot P C, Li C S, . Sulfur Isotopic Studies of Continental Flood Basalts in the Noril’sk Region: Implications for the Association between Lavas and Ore-Bearing Intrusions. Geochimica et Cosmochimica Acta, 2003, 67(15): 2805-2817.

[63]

Ripley E M, Park Y R, Li C S, . Sulfur and Oxygen Isotopic Evidence of Country Rock Contamination in the Voisey’s Bay Ni-Cu-Co Deposit, Labrador, Canada. Lithos, 1999, 47(1/2): 53-68.

[64]

Ripley E M, Sarkar A, Li C. Mineralogic and Stable Isotope Studies of Hydrothermal Alteration at the Jinchuan Ni-Cu Deposit, China. Economic Geology, 2005, 100(7): 1349-1361.

[65]

Schulz, K. J., Chandler, V. W., Suzanne, W., et al., 2010. Magmatic Sulfide Rich Nickel-Copper Deposits Related to Picrite and (or) Tholeiitic Basalt Dike Sill Complexes: A Preliminary Deposit Model. U.S. Geological Survey Open-File Report 2010–1179. 25

[66]

Seat Z, Beresford S W, Grguric B A, . Reevaluation of the Role of External Sulfur Addition in the Genesis of Ni-Cu-PGE Deposits: Evidence from the Nebo-Babel Ni-Cu-PGE Deposit, West Musgrave, Western Australia. Economic Geology, 2009, 104(4): 521-538.

[67]

Şengün M. The Metamorphism and the Relationship between Infra and Suprastructures of the Bitlis Massif—Turkey. Bull. Min. Res. Expl., 1993, 115: 1-13.

[68]

Şengün, M., Çağlayan, A., Sevin, M., 1991. The Bitlis Massif: Geology of Bitlis-Tatvan-Hizan-Şirvan Area. General Directorate of the Mineral Research and Exploration Report No. 9105. 200

[69]

Su B X, Qin K Z, Sun H, . Olivine Compositional Mapping of Mafic-Ultramafic Complexes in Eastern Xinjiang (NW China): Implications for Cu-Ni Mineralization and Tectonic Dynamics. Journal of Earth Science, 2012, 23(1): 41-53.

[70]

Thakurta J, Ripley E M, Li C. Platinum Group Element Geochemistry of Sulfide-Rich Horizons in the Ural-Alaskan-Type Ultramafic Complex of Duke Island, Southeastern Alaska. Economic Geology, 2014, 109(3): 643-659.

[71]

Thompson J F H, Naldrett A J. Sulphide-Silicate Reactions as a Guide to Ni-Cu-Co Mineralization in Central Maine, 1984, London: Inst. Min. and Metall.

[72]

Tornos F, Casquet C, Galindo C, . A New Style of Ni-Cu Mineralization Related to Magmatic Breccia Pipes in a Transpressional Magmatic Arc, Aguablanca, Spain. Mineralium Deposita, 2001, 36(7): 700-706.

[73]

Tornos F, Galindo C, Casquet C, . The Aguablanca Ni-(Cu) Sulfide Deposit, SW Spain: Geologic and Geochemical Controls and the Relationship with a Midcrustal Layered Mafic Complex. Mineralium Deposita, 2006, 41(8): 737-769.

[74]

Türkünal S. Geology of the Eastern and Southeastern Anatolia, 1980, Ankara: Chamber of Geophysical Engineers, 8 64

[75]

Ustaömer P A, Ustaömer T, Collins A S, . Cadomian (Ediacaran-Cambrian) Arc Magmatism in the Bitlis Massif, SE Turkey: Magmatism along the Developing Northern Margin of Gondwana. Tectonophysics, 2009, 473(1/2): 99-112.

[76]

Ustaömer P A, Ustaömer T, Gerdes A, . Evidence of Precambrian Sedimentation/Magmatism and Cambrian Metamorphism in the Bitlis Massif, SE Turkey Utilising Whole-Rock Geochemistry and U-Pb LA-ICP-MS Zircon Dating. Gondwana Research, 2012, 21(4): 1001-1018.

[77]

Yildirim, N., Gören, B., Dönmez, C., et al., 2016. Magmatic Ni-Sulfide Mineralization in the Precambrian Massif, Eastern Turkey (Bitlis-Pancarli). 69th Geological Congress of Turkey, MTA Ankara

[78]

Yilmaz O, Michel R, Vialette Y, . Réinterprétation des Données Isotopiques Rb-Sr Obtenues Sur Les Métamorphites de La Partie Méridionale Du Massif de Bitlis (Turquie). Sciences Géologiques Bulletin, 1981, 34(1): 59-73.

[79]

Yilmaz Y, Yiğitbaş E, Genç Ş C C. Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and Their Significance in the Geological Evolution of the Orogenic Belt. Tectonics, 1993, 12(5): 1280-1297.

[80]

Zientek M L, Likhachev A P, Kunilov V E, . Cumulus Processes and the Composition of Magmatic Ore Deposits: Examples from the Talnakh District, Russia. Ontario Geological Survey Special Publication, Ontario, 1994, 5: 373-392.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/