Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton

Zhiguang Zhou , Jiangwei Wu , Yi Niu , Guosheng Wang , Chen Wu , Changfeng Liu , Juncheng Ju

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (4) : 653 -667.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (4) : 653 -667. DOI: 10.1007/s12583-020-1296-8
Mineralogy • Petrology • Mineral Deposits

Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton

Author information +
History +
PDF

Abstract

Mesoproterozoic magma events in the Bayan Obo rift belt have remained poorly constrained and as a result, the Late Paleoproterozoic-Mesoproterozoic tectonic evolution of the rift belt has remained unclear. By a multiple-facetted regional geological investigation of this belt, we have resolved the stratigraphic sequence and geochronology of the Bayan Obo Group and made new discoveries including a three-stage mantle-derived magmatic sequence. Zircon and baddeleyite dating of Xiaonanshan hornblende pyroxenite emplaced into the Bayan Obo Group yields 207Pb/206Pb ages of ca. 1.34 and 1.33 Ga. The geochronological, geochemistry, Hf isotopic analyses place an important constraint on ages of the Late Paleoproterozoic-Mesoproterozoic strata and the evolution of the rift belt. Our field observations and U-Pb dating results suggest that mineralization is genetically related to Mesoproterozoic magmatism in North China Craton, i.e., 1.33–1.34 Ga. The δ34SV-CDT values of sulphide from the ore-bearing ultra-/mafic samples are about 6.2‰, whereas the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values vary in the ranges of 17.598–18.115, 15.496–15.501, and 37.478–37.952, respectively. The Late Paleozoic mafic gabbro and acidic granite porphyry intrusions are possible to bimodal magmatic event related to the extensional tectonic setting of the Central Asia in this period.

Keywords

Bayan Obo rift belt / North China Craton / Late Paleoproterozoic-Mesoproterozoic tectonic evolution / Mesoproterozoic mineralization / Pb-S isotopic analysis

Cite this article

Download citation ▾
Zhiguang Zhou, Jiangwei Wu, Yi Niu, Guosheng Wang, Chen Wu, Changfeng Liu, Juncheng Ju. Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton. Journal of Earth Science, 2020, 31(4): 653-667 DOI:10.1007/s12583-020-1296-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192(1): 59-79. 2

[2]

Boynton W V. Henderson P. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 1984, Amsterdam, Netherlands: Elsevier, 63-114.

[3]

Dang Z C, Li J J, Fu C, . LA-ICP-MS Zircon U-Pb Dating of Mafic-Ultramafic Intrusions in the Central Inner Mongolia and Its Geological Significance. Geotectonica et Metallogenia, 2019, 43(2): 303-321.

[4]

Dang Z C, Li J J, Zhao Z L, . Geochemistry of Cu-Ni (PGE) Sulfide-Bearing Mafic-Ultramafic Rocks on the Middle Segment of the North China Plate. Northwestern Geology, 2015, 48(2): 73-83.

[5]

Dulski P. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Fresenius’ Journal of Analytical Chemistry, 1994, 350(4): 194-203. 5

[6]

Ernst R E, Hamilton M A, Söderlund U, . Long-Lived Connection between Southern Siberia and Northern Laurentia in the Proterozoic. Nature Geoscience, 2016, 9(6): 464-469.

[7]

Ernst R E, Wingate M T D, Buchan K L, . Global Record of 1 600–700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 2008, 160(1/2): 159-178.

[8]

Evans D A D. Reconstructing Pre-Pangean Supercontinents. Geological Society of America Bulletin, 2013, 1735-1751.

[9]

Goldberg A S. Dyke Swarms as Indicators of Major Extensional Events in the 1.9–1.2 Ga Columbia Supercontinent. Journal of Geodynamics, 2010, 176-190.

[10]

Griffin W L, Belousova E A, Shee S R, . Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 2004, 231-282.

[11]

Griffin W L, Pearson N J, Belousova E, . The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

[12]

Hanson R E. Coeval Large-Scale Magmatism in the Kalahari and Laurentian Cratons during Rodinia Assembly. Science, 2004, 304(5674): 1126-1129.

[13]

He Y, Zhao G, Sun M, . SHRIMP and LA-ICP-MS Zircon Geochronology of the Xiong’er Volcanic Rocks: Implications for the Paleo-Mesoproterozoic Evolution of the Southern Margin of the North China Craton. Precambrian Research, 2009, 213-222.

[14]

Hoffman P F. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?. Science, 1991, 252(5011): 1409-1412.

[15]

Hoffman P F. van Der Pluijm B A, Marshak S. Tectonic Genealogy of North America. Earth Structure: An Introduction to Structural Geology and Tectonics, 1997, New York: McGraw-Hill, 459-464.

[16]

Hou G T, Santosh M, Qian X L, . Tectonic Constraints on 1.3−1.2 Ga Final Breakup of Columbia Supercontinent from a Giant Radiating Dyke Swarm. Gondwana Research, 2008, 14(3): 561-566.

[17]

Hou K J, Li Y H, Zou T R, . Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Application. Acta Petrologica Sinica, 2007, 23: 2595-2604.

[18]

Jia H Y, Xu L Q, Zhang Y Q. Features and Regional Correlation on Two-Main Unconformity Interfaces in Baiyunebo Group, Inner Mongolia. Inner Mongolia Geology, 2002, 2: 5-10. (in Chinese with English abstract)

[19]

Jiang S H, Nie F J, Liu Y, . Geochemical Features and Origin of the Gabbro in the Xiaonanshan Pt&-Cu-Ni Deposit, Inner Mongolia. Acta Geoscientia Sinica, 2003, 4: 121-126. (in Chinese with English Abstract)

[20]

Kaur P, Chaudhri N. Metallogeny Associated with the Palaeo-Mesoproterozoic Columbia Supercontinent Cycle: A Synthesis of Major Metallic Deposits. Ore Geology Reviews, 2014, 56: 415-422.

[21]

Kröner A, Wilde S A, Zhao G C, . Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 2006, 146(1): 45-67. 2

[22]

Kusky T M, Li J H. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 2010, 21(5): 744-781.

[23]

Kusky T M, Polat A, Windley B F, . Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 2016, 162: 387-432.

[24]

Kusky T M, Windley B F, Polat A. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 2018, 29(6): 1291-1303.

[25]

Le Maitre, R. W. B., Dudek, P., Keller, A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks (No. 552.3 CLA): International Union of Geological Sciences. Blackwell, Oxford. 193

[26]

Li H K, Geng J Z, Hao S, . The Study of Zircon U-Pb Dating by Means LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28 77 (in Chinese)

[27]

Li H K, Lu S N, Li H M, . Geological Bulletin of China, 2009, 28: 1396-1404.

[28]

Li H K, Lu S N, Su W B, . Recent Advances in the Study of the Mesoproterozoic Geochronology in the North China Craton. Journal of Asian Earth Sciences, 2013, 72: 216-227.

[29]

Liu C F, Zhang H R, Yu Y S, . Dating and Petrochemistry of the Beijige Pluton in Siziwangqi, Inner Mongolia. Geoscience, 2010, 24(1): 112-119.

[30]

Liu C H, Liu F L. The Mesoproterozoic Rifting in the North China Craton: A Case Study for Magmatism and Sedimentation of the Zhaertai-Bayan Obo-Huade Rift Zone. Acta Geological Sinica, 2015, 31: 317-3128.

[31]

Liu C H, Zhao G C, Liu F L. Detrital Zircon U-Pb, Hf Isotopes, Detrital Rutile and Whole-Rock Geochemistry of the Huade Group on the Northern Margin of the North China Craton: Implications on the Breakup of the Columbia Supercontinent. Precambrian Research, 2014, 254: 290-305.

[32]

Liu C H, Zhao G C, Liu F L, . Detrital Zircon U-Pb and Hf Isotopic and Whole-Rock Geochemical Study of the Bayan Obo Group, Northern Margin of the North China Craton: Implications for Rodinia Reconstruction. Precambrian Research, 2017, 303: 372-391.

[33]

Lu S N, Hao G J, Xiang Z Q. Precambrian Major Geological Events. Earth Science Frontiers, 2016, 23(6): 140-155.

[34]

Lu S N, Yang C L, Li H K, . North China Continent and Columbia Supercontinent. Earth Science Frontier, 2002, 9(4): 225-233.

[35]

Lu S N, Zhao G C, Wang H C, . Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 2008, 77-93.

[36]

Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, 2003, Berkeley, California: Berkeley Geochronology Center, 70.

[37]

Meert J G. Strange Attractors, Spiritual Interlopers and Lonely Wanderers: The Search for Pre-Pangean Supercontinents. Geoscience Frontiers, 2014, 5(2): 155-166.

[38]

Middlemost E A K. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 1994, 37(3): 215-224. 4

[39]

Ning W B, Wang J P, Xiao D, . Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 2019, 30(5): 952-963.

[40]

Norrish K, Chappel B W. Zussman J. X-Ray Fluorescence Spectrometry. Physical Methods in Determinative Mineralogy, 1977, 2, New York: Academic Press, 201-272.

[41]

Ohmoto H, Goldhaber M B. Barnes H L. Sulfur and Carbon Isotopes. Geochemistry of Hydrothermal Ore Deposits, 1997, 3, New York: John Wiley & Sons Inc., 517-611.

[42]

Ohmoto H, Rye R O. Barnes H L. Isotopes of Sulfur and Carbon. Geochemistry of Hydrothermal Ore Deposits, 1979, 2, New York: John Wiley & Sons Inc., 509-567.

[43]

Peng R M, Zhai Y S, Wang J P, . Discovery of Neoproterozoic Acid Volcanic Rock in the Western Section of Langshan, Inner Mongolia, and Its Geological Significance. Chinese Science Bulletin (Chinese Version), 2010, 55: 2611-2620.

[44]

Piper J D A. Continental Velocity through Precambrian Times: The Link to Magmatism, Crustal Accretion and Episodes of Global Cooling. Geoscience Frontiers, 2013, 4(1): 7-36.

[45]

Pisarevsky S A, Elming S Å, Pesonen L J, . Mesoproterozoic Paleogeography: Supercontinent and Beyond. Precambrian Research, 2014, 244: 207-225.

[46]

Rickwood P C. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 1989, 22(4): 247-263.

[47]

Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 2002, 5(1): 5-22.

[48]

Rogers J J W, Santosh M. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 2009, 15(3): 373-380. 4

[49]

Santosh M. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 2010, 178(1): 149-167. 2/3/4

[50]

Santosh M, Maruyama S, Yamamoto S. The Making and Breaking of Supercontinents: Some Speculations Based on Super-plumes, Super Downwelling and the Role of Tectosphere. Gondwana Research, 2009, 324-341.

[51]

Scherer E. Calibration of the Lutetium-Hafnium Clock. Science, 2001, 293(5530): 683-687.

[52]

Sláma J, Kosler J, Condon D J, . Plesovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 2008, 1-35.

[53]

Sun S Q, Wang Y L, Zhang C J. Discrimination of the Tectonic Setting of Basalts by Th, Nb, Zr. Geological Review, 2003, 49(1): 40-47.

[54]

Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[55]

Upton B. Magmatism of the Mid-Proterozoic Gardar Province, South Greenland: Chronology, Petrogenesis and Geological Setting. Lithos, 2003, 43-65.

[56]

Wan B, Windley B F, Xiao W J, . Paleoproterozoic High-Pressure Metamorphism in the Northern North China Craton and Implications for the Nuna Supercontinent. Nature Communications, 2015, 6(1): 1-10.

[57]

Wan Y S, Liu D Y, Wang W, . Provenance of Meso-to Neoproterozoic Cover Sediments at the Ming Tombs, Beijing, North China Craton: An Integrated Study of U-Pb Dating and Hf Isotopic Measurement of Detrital Zircons and Whole-Rock Geochemistry. Gondwana Research, 2011, 20(1): 219-242.

[58]

Wan Y S, Liu D, Xu Z, . Paleoproterozoic Crustally Derived Carbonate-Rich Magmatic Rocks from the Daqinshan Area, North China Craton: Geological, Petrographical, Geochronological and Geochemical (Hf, Nd, O and C) Evidence. American Journal of Science, 2008, 308(3): 351-378.

[59]

Wan Y S, Xu Z Y, Dong C Y, . Episodic Paleoproterozoic (∼2.45, ∼1.95 and ∼1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 2013, 224: 71-93.

[60]

Wang J P, Kusky T M, Polat A, . A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 2013, 608: 929-946.

[61]

Wang J P, Kusky T M, Wang L, . A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 2015, 220–223: 133-146.

[62]

Wang J P, Kusky T, Wang L, . Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 2017, 129(1): 59-75. 2

[63]

Wang J P, Li X W, Ning W B, . Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 2019, 1943-1964.

[64]

Wang S J, Li X P, Schertl H P, . Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 2019, 113(1): 77-97.

[65]

Wang S J, Schertl H P, Pang Y M. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 2020, 57(2): 249-266.

[66]

Wang W, Liu S W, Santosh M, . 1.23 Ga Mafic Dykes in the North China Craton and Their Implications for the Reconstruction of the Columbia Supercontinent. Gondwana Research, 2015, 27(4): 1407-1418.

[67]

Wang Y L, Zhang C J, Xin S Z. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 2001, 17(3): 413-421.

[68]

Wingate M T D, Compston W. Crystal Orientation Effects during Ion Microprobe U-Pb Analysis of Baddeleyite. Chemical Geology, 2000, 75-97.

[69]

Wu C, Liu C F, Zhu Y, . Early Paleozoic Magmatic History of Central Inner Mongolia, China: Implications for the Tectonic Evolution of the Southeast Central Asian Orogenic Belt. International Journal of Earth Sciences, 2016, 105(5): 1307-1327.

[70]

Wu C, Zhou Z G, Zuza A V, . A 1.9-Ga Mélange along the Northern Margin of the North China Craton: Implications for the Assembly of Columbia Supercontinent. Tectonics, 2018, 37(10): 3610-3646.

[71]

Xia X P, Sun M, Zhao G C, . U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites: Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 2006, 581-593.

[72]

Zhai M G, Hu B, Peng P, . Meso-Neoproterozoic Magmatic Events and Multi-Stage Rifting in the NCC. Earth Science Frontiers, 2014, 21(1): 100-119. (in Chinese with English Abstract)

[73]

Zhai M G, Santosh M. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 2013, 24(1): 275-297.

[74]

Zhai M. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 2003, 122(1): 183-199. 2/3/4

[75]

Zhang S H, Zhao Y, Li X H, . The 1.33–1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 2017, 465: 112-125.

[76]

Zhang S H, Zhao Y, Santosh M. Mid-Mesoproterozoic Bimodal Magmatic Rocks in the Northern North China Craton: Implications for Magmatism Related to Breakup of the Columbia Supercontinent. Precambrian Research, 2012, 222–223: 339-367.

[77]

Zhang S H, Zhao Y, Yang Z Y, . The 1.35 Ga Diabase Sills from the Northern North China Craton: Implications for Breakup of the Columbia (Nuna) Supercontinent. Earth and Planetary Science Letters, 2009, 588-600.

[78]

Zhang Y M, Zhang H F, Liu W C, . Timing and Petrogenesis of the Damiao Granodiorite, Siziwangqi, Inner Mongolia. Acta Peteologica Sinica, 2009, 25(12): 3165-3181.

[79]

Zhao, G. C., 2014. Precambrian Evolution of the North China Craton. Elsevier, Oxford. 1–14

[80]

Zhao G C, Cawood P A, Wilde S A, . Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 2000, 55-88.

[81]

Zhao G C, Cawood P A, Wilde S A, . Review of Global 2.1–1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 2002, 125-162.

[82]

Zhao G C, He Y H, Sun M. The Xiong’er Volcanic Belt at the Southern Margin of the North China Craton: Petrographic and Geochemical Evidence for Its Outboard Position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 2009, 16(2): 170-181.

[83]

Zhao G C, Sun M, Wilde S A, . Gondwana Research, 2003, 6(3): 417-434.

[84]

Zhao G C, Sun M, Wilde S A. Precambrian Research, 2003, 122: 201-233.

[85]

Zhao G C, Sun M, Wilde S A, . A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 2004, 67(1): 91-123. 2

[86]

Zhao G C, Sun M, Wilde S A, . Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136: 177-202.

[87]

Zhao G C, Wilde S A, Cawood, . Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 2001, 107: 45-73.

[88]

Zhao T P, Chen F K, Zhai M G, . Single Zircon U-Pb Ages and Their Geological Significance of the Damiao Anorthosite Complex, Heibei Province, China. Acta Petrological Sinica, 2004, 20: 685-690.

[89]

Zhao T P, Xu Y H, Zhai M G. Petrogenesis and Tectonic Setting of the Paleoproterozoic Xiong’Er Group in the Southern Part of the North China Craton: A Review. Geological Journal of China Universities, 2007, 13(2): 191-206.

[90]

Zhou Z G, Wang G S, Di Y J, . Geological Journal, 2018, 53(3): 992-1004.

[91]

Zhou Z G, Hu M M, Wu C, . Coupled U-Pb Dating and Hf Isotopic Analysis of Detrital Zircons from Bayan Obo Group in Inner Mongolia: Constraints on the Evolution of the Bayan Obo Rift Belt. Geological Journal, 2018, 53(6): 2649-2664.

[92]

Zhou Z G, Wang G S, Zhang D, . Zircon Ages of Gabbros in the Siziwangqi, Inner Mongolia and Its Constrain on the Formation Time of the Bayan Obo Group. Acta Petrologica Sinica, 2016, 32(6): 1809-1822. (in Chinese with English Abstract)

[93]

Zhou Z G, Zhang H F, Liu H L, . Zircon U-Pb Dating of Basic Intrusions in Siziwangqi Area of Middle Inner Mongolia: China. Acta Petrologica Sinica, 2009, 25: 1519-1528.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/