Detrital Zircon Fission-Track Thermochronology of the Present-Day River Drainage System in the Mt. Kailas Area, Western Tibet: Implications for Multiple Cooling Stages of the Gangdese Magmatic Arc

Tianyi Shen , Guocan Wang

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (5) : 896 -904.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (5) : 896 -904. DOI: 10.1007/s12583-020-1285-y
Structural Geology

Detrital Zircon Fission-Track Thermochronology of the Present-Day River Drainage System in the Mt. Kailas Area, Western Tibet: Implications for Multiple Cooling Stages of the Gangdese Magmatic Arc

Author information +
History +
PDF

Abstract

It is still controversial how the high elevation of the Tibetan Plateau established after the Indian-Asian collision during the Cenozoic. The timing of Gangdese magmatic arc exhumation and uplift history would provide useful message for this disputation. We present six zircon fission-track (ZFT) data from modern river sand in the western Tibet, around the Mt. Kailas, to decipher the long-term exhumation histories of the Gangdese magmatic arc. The data suggests that all the Gangdese magmatic arc rocks experienced rapid cooling during the Eocene (∼46’35 Ma) and Oligocene (∼31’26 Ma). The movement along the north-south trending extensional fault and dextral strike-slip Karakoram fault induced the adjacent rocks exhumed at the Middle Miocene (∼15’16 Ma) and Late Miocene (∼10’11 Ma), respectively. According to the minimum and central AFT ages for each sample, the fastest exhumation rate is about 0.4 km/Ma, with average long-term exhumation rates on the order of ∼0.3 km/Ma since the Oligocene. This result supports the outward growth model for plateau forming, indicating the southern margin of the Gangdese magmatic arc attained high elevation after the Oligocene.

Keywords

detrital zircon fission-track / exhumation history / Gangdese magmatic arc / western Tibet

Cite this article

Download citation ▾
Tianyi Shen, Guocan Wang. Detrital Zircon Fission-Track Thermochronology of the Present-Day River Drainage System in the Mt. Kailas Area, Western Tibet: Implications for Multiple Cooling Stages of the Gangdese Magmatic Arc. Journal of Earth Science, 2020, 31(5): 896-904 DOI:10.1007/s12583-020-1285-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernet M. Detrital Zircon Fission-Track Thermochronology of the Present-Day Isère River Drainage System in the Western Alps: No Evidence for Increasing Erosion Rates at 5 Ma. Geosciences, 2013, 3(3): 528-542

[2]

Bernet M, Garver J I. Fission-Track Analysis of Detrital Zircon, Low-Temperature Thermochronology. Techniques, Interpretations, and Applications, 2005, 58: 205-237.

[3]

Bernet M, van der Beek P, Pik R, . Miocene to Recent Exhumation of the Central Himalaya Determined from Combined Detrital Zircon Fission-Track and U/Pb Analysis of Siwalik Sediments, Western Nepal. Basin Research, 2006, 18(4): 393-412

[4]

Bernet M, Zattin M, Garver J I, . Steady-State Exhumation of the European Alps. Geology, 2001, 29(1): 3-38

[5]

Brandon M T. Decomposition of Fission-Track Grain-Age Distributions. American Journal of Science, 1992, 292(8): 535-564

[6]

Brandon M T. Probability Density Plot for Fission-Track Grain-Age Samples. Radiation Measurements, 1996, 26(5): 663-676

[7]

Carrapa B, Orme D A, DeCelles P G, . Miocene Burial and Exhumation of the India-Asia Collision Zone in Southern Tibet: Response to Slab Dynamics and Erosion. Geology, 2014, 42(5): 443-446

[8]

Carter A, Moss S J. Combined Detrital-Zircon Fission-Track and U-Pb Dating: A New Approach to Understanding Hinterland Evolution. Geology, 1999, 27(3): 235-238

[9]

Chen J S, Huang B C, Sun L S. New Constraints to the Onset of the India-Asia Collision: Paleomagnetic Reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 2010, 489(1/2/3/4): 189-209

[10]

Chevalier M L, Ryerson F J, Tapponnier P, . Slip-Rate Measurements on the Karakorum Fault May Imply Secular Variations in Fault Motion. Science, 2005, 307: 411-414.

[11]

Chirouze F, Bernet M, Huyghe P, . Detrital Thermochronology and Sediment Petrology of the Middle Siwaliks along the Muksar Khola Section in Eastern Nepal. Journal of Asian Earth Sciences, 2012, 44: 94-106.

[12]

Chung S L, Chu M F, Ji J Q, . The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 2009, 477(1/2): 36-48

[13]

Chung S L, Chu M F, Zhang Y Q, . Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 2005, 68(3/4): 173-196

[14]

Copeland P, Harrison T M, Pan Y, . Thermal Evolution of the Gangdese Batholith, Southern Tibet: A History of Episodic Unroofing. Tectonics, 1995, 14(2): 223-236

[15]

Dai J G, Wang C S, Hourigan J, . Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau: Evidence from Apatite and Zircon (U-Th)/He Thermochronology. The Journal of Geology, 2013, 121(2): 155-172

[16]

DeCelles P G, Kapp P, Gehrels G E, . Paleocene-Eocene Foreland Basin Evolution in the Himalaya of Southern Tibet and Nepal: Implications for the Age of Initial India-Asia Collision. Tectonics, 2014, 33(5): 824-849

[17]

DeCelles P G, Kapp P, Quade J, . Oligocene-Miocene Kailas Basin, Southwestern Tibet: Record of Postcollisional Upper-Plate Extension in the Indus-Yarlung Suture Zone. Geological Society of America Bulletin, 2011, 123(7/8): 1337-1362

[18]

DeCelles P G, Quade J, Kapp P, . High and Dry in Central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 2007, 253(3/4): 389-401

[19]

Ding L, Xu Q, Yue Y H, . The Andean-Type Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 2014, 392: 250-264.

[20]

Ehlers T A. Computational Tools for Low-Temperature Thermochronometer Interpretation. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 589-622

[21]

England P, Molnar P. Surface Uplift, Uplift of Rocks, and Exhumation of Rocks. Geology, 1990, 18(12): 1173-1177

[22]

Galbraith R F, Laslett G M. Statistical Models for Mixed Fission Track Ages. Nuclear Tracks and Radiation Measurements, 1993, 21(4): 459-470

[23]

Gao S B, Zheng Y Y, Jiang J S, . Geochemistry and Geochronology of the Gebunongba Iron Polymetallic Deposit in the Gangdese Belt, Tibet. Journal of Earth Science, 2019, 30(2): 296-308

[24]

Ge Y K, Dai J G, Wang C S, . Cenozoic Thermo-Tectonic Evolution of the Gangdese Batholith Constrained by Low-Temperature Thermochronology. Gondwana Research, 2017, 41: 451-462.

[25]

Gourbet L, Mahéo G, Leloup P H, . Western Tibet Relief Evolution since the Oligo-Miocene. Gondwana Research, 2017, 41: 425-437.

[26]

Haider V L, Dunkl I, Eynatten H V, . Cretaceous to Cenozoic Evolution of the Northern Lhasa Terrane and the Early Paleogene Development of Peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 2013, 70–71: 79-98.

[27]

Harrison T M, Copeland P, Kidd W S F, . Activation of the Nyainqentanghla Shear Zone: Implications for Uplift of the Southern Tibetan Plateau. Tectonics, 1995, 14(3): 658-676

[28]

Harrison T M, Yin A, Grove M, . The Zedong Window: A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research: Solid Earth, 2000, 105(B8): 19211-19230

[29]

Heim A, Gansser A. Central Himalayan Geological Observations of the Swiss Expedition. Mem. Sos. Halv. Nat., 1939, 77: 245

[30]

Hetzel R, Dunkl I, Haider V, . Peneplain Formation in Southern Tibet Predates the India-Asia Collision and Plateau Uplift. Geology, 2011, 39 983-986.

[31]

Hu X M, Garzanti E, Wang J G, . The Timing of India-Asia Collision Onset—Facts, Theories, Controversies. Earth-Science Reviews, 2016, 160: 264-299.

[32]

Huang H X, Zhang L K, Liu H, . Major Types, Mineralization and Potential Prospecting Areas in Western Section of the Gangdise Metallogenic Belt, Tibet. Earth Science, 2019, 44(6): 1876-1887

[33]

Hurford A J, Fitch F J, Clarke A. Resolution of the Age Structure of the Detrital Zircon Populations of Two Lower Cretaceous Sandstones from the Weald of England by Fission Track Dating. Geological Magazine, 1984, 121(4): 269-277

[34]

Kapp P, DeCelles P G, Gehrels G E, . Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 2007, 119(7/8): 917-933

[35]

Kapp P, Yin A, Harrison T M, . Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet. Geological Society of America Bulletin, 2005, 117(7): 865-878

[36]

Lacassin R, Valli F, Arnaud N, . Large-Scale Geometry, Offset and Kinematic Evolution of the Karakorum Fault, Tibet. Earth and Planetary Science Letters, 2004, 219(3/4): 255-269

[37]

Laskowski A K, Kapp P, Cai F L, . Gangdese Culmination Model: Oligocene-Miocene Duplexing along the India-Asia Suture Zone, Lazi Region, Southern Tibet. GSA Bulletin, 2018, 130(7/8): 1355-1376

[38]

Leech M, Singh S, Jain A, . The Onset of India-Asia Continental Collision: Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya. Earth and Planetary Science Letters, 2005, 234(1/2): 83-97

[39]

Li G W, Kohn B, Sandiford M, . Synorogenic Morphotectonic Evolution of the Gangdese Batholith, South Tibet: Insights from Low-Temperature Thermochronology. Geochemistry, Geophysics, Geosystems, 2016, 17(1): 101-112

[40]

Li G W, Tian Y T, Kohn B P, . Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications. Tectonophysics, 2015, 643: 80-93.

[41]

Li S, Ding L, Xu Q, . The Evolution of Yarlung Tsangpo River: Constraints from the Age and Provenance of the Gangdese Conglomerates, Southern Tibet. Gondwana Research, 2017, 41: 249-266.

[42]

Li Z L, Yang J S, Li T F, . Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle. Journal of Earth Science, 2019, 30(3): 563-570

[43]

Mo X X, Dong G C, Zhao Z D, . Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 2009, 20(2): 241-249

[44]

Mo X X, Niu Y L, Dong G C, . Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the sPaleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 2008, 250(1/2/3/4): 49-67

[45]

Murphy M A, Sanchez V, Taylor M H. Syncollisional Extension along the India-Asia Suture Zone, South-Central Tibet: Implications for Crustal Deformation of Tibet. Earth and Planetary Science Letters, 2010, 290(3/4): 233-243

[46]

Murphy M A, Yin A. Structural Evolution and Sequence of Thrusting in the Tethyan Fold-Thrust Belt and Indus-Yalu Suture Zone, Southwest Tibet. Geological Society of America Bulletin, 2003, 115(1): 21-34

[47]

Najman Y, Appel E, Boudagher-Fadel M, . Timing of India-Asia Collision: Geological, Biostratigraphic, and Palaeomagnetic Constraints. Journal of Geophysical Research—Solid Earth, 2010, 115: B12416

[48]

Pullen A, Kapp P, DeCelles P G, . Cenozoic Anatexis and Exhumation of Tethyan Sequence Rocks in the Xiao Gurla Range, Southwest Tibet. Tectonophysics, 2011, 501(1/2/3/4): 28-40

[49]

Reiners P W, Brandon M T. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 419-466

[50]

Rohrmann A, Kapp P, Carrapa B, . Thermochronologic Evidence for Plateau Formation in Central Tibet by 45 Ma. Geology, 2012, 40(2): 187-190

[51]

Rowley D B, Currie B S. Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 2006, 439(7077): 677-681

[52]

Shen T Y, Wang G C, Bernet M, . Long-Term Exhumation History of the Gangdese Magmatic Arc: Implications for the Evolution of the Kailas Basin, Western Tibet. Geological Journal, 2019, 515(4): 1-12

[53]

Shen T Y, Wang G C, Leloup P H, . Controls on Cenozoic Exhumation of the Tethyan Himalaya from Fission-Track Thermochronology and Detrital Zircon U-Pb Geochronology in the Gyirong Basin Area, Southern Tibet. Tectonics, 2016, 35(7–8): 1713-1734

[54]

Spicer R A, Harris N B W, Widdowson M, . Constant Elevation of Southern Tibet over the Past 15 Million Years. Nature, 2003, 421(6923): 622-624

[55]

Stewart R J, Brandon M T. Detrital-Zircon Fission-Track Ages for the “Hoh Formation”: Implications for Late Cenozoic Evolution of the Cascadia Subduction Wedge. Geological Society of America Bulletin, 2004, 116(1): 60-75

[56]

Styron R, Taylor M, Sundell K. Accelerated Extension of Tibet Linked to the Northward Underthrusting of Indian Crust. Nature Geoscience, 2015, 8(2): 131-134

[57]

Tapponnier P. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294(5547): 1671-1677

[58]

Tremblay M M, Fox M, Schmidt J L, . Erosion in Southern Tibet Shut down at ∼10 Ma Due to Enhanced Rock Uplift within the Himalaya. Proceedings of the National Academy of Sciences, 2015, 112(39): 12030-12035

[59]

Valli F, Arnaud N, Leloup P H, . Twenty Million Years of Continuous Deformation along the Karakorum Fault, Western Tibet: A Thermochronological Analysis. Tectonics, 2007, 26(4): TC4004

[60]

Vermeesch P. RadialPlotter: A Java Application for Fission Track, Luminescence and Other Radial Plots. Radiation Measurements, 2009, 44 4 409-410

[61]

Wang A, Wang G, Xie D, . Fission Track Geochronology of Xiaonanchuan Pluton and the Morphotectonic Evolution of Eastern Kunlun since Late Miocene. Journal of China University of Geosciences, 2006, 17(4): 302-309

[62]

Wang C S, Dai J G, Zhao X X, . Outward-Growth of the Tibetan Plateau during the Cenozoic: A Review. Tectonophysics, 2014, 621 1-43.

[63]

Wang C S, Zhao X X, Liu Z F, . Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2008, 105(13): 4987-4992

[64]

Wang E, Kamp P J J, Xu G Q, . Flexural Bending of Southern Tibet in a Retro Foreland Setting. Scientific Reports, 2015, 5(1): 12076

[65]

Wang J G, Hu X M, Garzanti E, . Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 2013, 121 4 425-444

[66]

Wei Y, Zhang K X, Garzione C N, . Low Palaeoelevation of the Northern Lhasa Terrane during Late Eocene: Fossil Foraminifera and Stable Isotope Evidence from the Gerze Basin. Scientific Reports, 2016, 6(1): 27508

[67]

Willett S D, Brandon M T. Some Analytical Methods for Converting Thermochronometric Age to Erosion Rate. Geochemistry, Geophysics, Geosystems, 2013, 14 1 209-222

[68]

Wu Z H, Hu D G, Ye P S, . Thrusting of the North Lhasa Block in the Tibetan Plateau. Acta Geológica Sinica—English Edition, 2004, 78(1): 246-259

[69]

Xu Q, Ding L, Hetzel R, . Low Elevation of the Northern Lhasa Terrane in the Eocene: Implications for Relief Development in South Tibet. Terra Nova, 2015, 27(6): 458-466

[70]

Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280

[71]

Yin A, Harrison T M, Murphy M A, . Tertiary Deformation History of Southeastern and Southwestern Tibet during the Indo-Asian Collision. Geological Society of America Bulletin, 1999, 111(11): 1644-1664

[72]

Yin A, Harrison T M, Ryerson F J, . Tertiary Structural Evolution of the Gangdese Thrust System, Southeastern Tibet. Journal of Geophysical Research: Solid Earth, 1994, 99(B9): 18175-18201

[73]

Zhao H, Yang J S, Liu F, . Post-Collisional, Potassic Volcanism in the Saga Area, Western Tibet: Implications for the Nature of the Mantle Source and Geodynamic Setting. Journal of Earth Science, 2019, 30(3): 571-584

[74]

Zhang L Y, Huang F, Xu J F, . Petrogenesis and Geochemistry of Meso-Cenozoic Granitic Rocks and Implication of Crustal Structure Changes in Shannan Area, Southern Tibet. Earth Science, 2019, 4(6): 1822-1833

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/