Glacial Lakes in the Andes under a Changing Climate: A Review

Bijeesh Kozhikkodan Veettil , Ulrich Kamp

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1575 -1593.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (6) : 1575 -1593. DOI: 10.1007/s12583-020-1118-z
Article

Glacial Lakes in the Andes under a Changing Climate: A Review

Author information +
History +
PDF

Abstract

In this article, we review the current knowledge of the glacial recession and related glacial lake development in the Andes of South America. Since the mid-1980s, hundreds of glacial lakes either expanded or formed, and predictions show that additional hundreds of lakes will form throughout the 21st century. However, studies on glacial lakes in the Andes are still relatively rare. Many glacial lakes pose a potential hazard to local communities, but glacial lake outburst floods (GLOFs) are understudied. We provide an overview on hazards from glacial lakes such as GLOFs and water pollution, and their monitoring approaches. In real-time monitoring, the use of unmanned aerial systems (UASs) and early warning systems (EWSs) is still extremely rare in the Andes, but increasingly authorities plan to install mitigation systems to reduce glacial lake risk and protect local communities. In support, we propose an international remote sensing-based observation initiative following the model of, for example, the Global Land Ice Measurements from Space (GLIMS) one, with the headquarters in one of the Andean nations.

Keywords

Andes / glacial change / glacial lake / glacial lake outburst flood / remote sensing / water pollution

Cite this article

Download citation ▾
Bijeesh Kozhikkodan Veettil, Ulrich Kamp. Glacial Lakes in the Andes under a Changing Climate: A Review. Journal of Earth Science, 2021, 32(6): 1575-1593 DOI:10.1007/s12583-020-1118-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguilar P, Dorador C, Vila I, . Bacterioplankton Composition in Tropical High-Elevation Lakes of the Andean Plateau. FEMS Microbiology Ecology, 2018, 94(3): fiy004

[2]

Altamirano Rua T. Refugiados Ambientales: Cambio Climático y Migración Forzada, 2014, Lima: Fondo Editorial, Ponteficia Universidad Católica del Peru

[3]

ANA Inventario Nacional de Glaciares y Lagunas: Inventario de Lagunas de las Cordillera Blanca (Resumen), 2012, Lima: ANA

[4]

Anacona P I. Hazardous Geomorphic Processes in the Extratropical Andes with a Focus on Glacial Lake Outburst Floods, 2016, Wellington, New Zealand: Victoria University of Wellington

[5]

Anacona P I, Norton K P, Mackintosh A. Moraine-Dammed Lake Failures in Patagonia and Assessment of Outburst Susceptibility in the Baker Basin. Natural Hazards and Earth System Sciences, 2014, 14: 3243-3259.

[6]

Anacona P I, Mackintosh A, Norton K. Reconstruction of a Glacial Lake Outburst Flood (GLOF) in the Engaño Valley, Chilean Patagonia: Lessons for GLOF Risk Management. Science of the Total Environment, 2015, 527(1): 1-11. 528

[7]

Anacona P I, Mackintosh A, Norton K P. Hazardous Processes and Events from Glacier and Permafrost Areas: Lessons from the Chilean and Argentinean Andes. Earth Surface Processes and Landforms, 2015, 40(1): 2-21.

[8]

Anacona P I, Norton K, Mackintosh A, . Dynamics of an Outburst Flood Originating from a Small and High-Altitude Glacier in the Arid Andes of Chile. Natural Hazards, 2018, 94(1): 93-119.

[9]

Balseiro E, Modenutti B, Queimaliños C, . Daphnia Distribution in Andean Patagonian Lakes: Effect of Low Food Quality and Fish Predation. Aquatic Ecology, 2007, 41(4): 599-609.

[10]

Barcaza G, Nussbaumer S U, Tapia G, . Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America. Annals of Glaciology, 2017, 58 166-180.

[11]

Barry R G. The Status of Research on Glaciers and Global Glacier Recession: A Review. Progress in Physical Geography: Earth and Environment, 2006, 30(3): 285-306.

[12]

Barta B, Mouillet C, Espinosa R, . Glacial-Fed and Páramo Lake Ecosystems in the Tropical High Andes. Hydrobiologia, 2018, 813(1): 19-32.

[13]

Bastgianon E, Bertoldi W, Dussaillant A. Murillo Munoz R E. Glacial-Lake Outburst Flood Effects on Colonia River Morphology, Chilean Patagonia. River Flow, 2012, London: Taylor and Francis, 573-579

[14]

Bastidas Navarro M, Martyniuk N, Balseiro E, . Effect of Glacial Lake Outburst Floods on the Light Climate in an Andean Patagonian Lake: Implications for Planktonic Phototrophs. Hydrobiologia, 2018, 816(1): 39-48.

[15]

Benn D I, Evans D J A. Glaciers and Glaciation, 1998, London: Hodder Education

[16]

Bhardwaj A, Sam L, Akanksha, . UAVs as Remote Sensing Platform in Glaciology: Present Applications and Future Prospects. Remote Sensing of Environment, 2016, 175(23): 196-204.

[17]

Bianchi V A, Castro J M, Rocchetta I, . Health Status and Bioremediation Capacity of Wild Freshwater Mussels (Diplodon Chilensis) Exposed to Sewage Water Pollution in a Glacial Patagonian Lake. Fish & Shellfish Immunology, 2014, 37(2): 268-277.

[18]

Bown F, Rivera A. Climate Changes and Recent Glacier Behaviour in the Chilean Lake District. Global and Planetary Change, 2006, 59(1): 79-86. 2/3/4

[19]

Bown F, Rivera A, Acuña C. Recent Glacier Variations at the Aconcagua Basin, Central Chilean Andes. Annals of Glaciology, 2008, 48: 43-48.

[20]

Bradley R S, Keinig F T, Diaz H F. Projected Temperature Changes along the American Cordillera and the Planned GCOS Network. Geophysical Research Letters, 2004, 31(16): L16210

[21]

Bradley R S, Vuille M, Diaz H F, . Climate Change: Threats to Water Supplies in the Tropical Andes. Science, 2006, 312 5781 1755-1756.

[22]

Bravo C, Loriaux T, Rivera A, . Assessing Glacier Melt Contribution to Streamflow at Universidad Glacier, Central Andes of Chile. Hydrology and Earth System Sciences, 2017, 21(7): 3249-3266.

[23]

Broggi J A. Informe Preliminar Sobre la Exploración y Estudio de las Condiciones de Estabilidad de las Lagunas de la Cordillera Blanca. Lima, Julio. Doc #I-GEOL-001, Biblioteca, 1942, Huaraz: Unidad de Glaciología y Recursos Hídricos

[24]

Bury J T, Mark B G, McKenzie J M, . Glacier Recession and Human Vulnerability in the Yanamarey Watershed of the Cordillera Blanca, Peru. Climatic Change, 2011, 105(1): 179-206. 2

[25]

Carey M. Living and Dying with Glaciers: People’s Historical Vulnerability to Avalanches and Outburst Floods in Peru. Global and Planetary Change, 2005, 47(2): 122-134. 3/4

[26]

Carey M, Huggel C, Bury J, . An Integrated Socio-Environmental Framework for Glacier Hazard Management and Climate Change Adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, 2012, 112(3): 733-767. 4

[27]

Carrivick J L, Quincey D J. Progressive Increase in Number and Volume of Ice-Marginal Lakes on the Western Margin of the Greenland Ice Sheet. Global and Planetary Change, 2014, 116(Suppl. 2): 156-163.

[28]

Cartuche A, Guan Z Y, Ibelings B W, . Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador. Sustainability, 2019, 11(19): 5235

[29]

Che, T., Xiao, L., Liou, Y. A., 2014. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet). Advances in Meteorology, (6): 1–8. https://doi.org/10.1155/2014/903709

[30]

Chevallier P, Pouyaud B, Suarez W, . Climate Change Threats to Environment in the Tropical Andes: Glaciers and Water Resources. Regional Environmental Change, 2011, 11 S1 179-187.

[31]

Chisolm R E, McKinney D C. Dynamics of Avalanche-Generated Impulse Waves: Three-Dimensional Hydrodynamic Simulations and Sensitivity Analysis. Natural Hazards and Earth System Sciences, 2018, 18(5): 1373-1393.

[32]

Colonia D, Torres J, Haeberli W, . Compiling an Inventory of Glacier-Bed Overdeepenings and Potential New Lakes in De-Glaciating Areas of the Peruvian Andes: Approach, First Results, and Perspectives for Adaptation to Climate Change. Water, 2017, 9(5): 336

[33]

Concha F J, Hoempler A. Índice de Lagunas y Glaciares de la Cordillera Blanca. Estudio, Comisión de Control de Las Lagunas de la Cordillera Blanca, Ministerio de Fomento, Lima, Mayo, 1953, Huaraz: Unidad de Glaciología y Recursos Hídricos

[34]

Cook S J, Quincey D J. Estimating the Volume of Alpine Glacial Lakes. Earth Surface Dynamics, 2015, 3 4 559-575.

[35]

Cook S J, Kougkoulos I, Edwards L A, . Glacier Change and Glacial Lake Outburst Flood Risk In the Bolivian Andes. The Cryosphere, 2016, 10(5): 2399-2413.

[36]

Costa J E, Schuster R L. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 1988, 100: 1054-1068.

[37]

Davies B J, Glasser N F. Accelerating Shrinkage of Patagonian Glaciers from the Little Ice Age (∼AD 1870) to 2011. Journal of Glaciology, 2012, 58(212): 1063-1084.

[38]

De los Ríos Escalante P, Acevedo P. First Observations on Zooplankton and Optical Properties in a Glacial North Patagonian Lake (Tagua Tagua Lake, 41°S Chile). Polish Journal of Environmental Studies, 2016, 25(1): 453-457.

[39]

Drenkhan F, Guardamino L, Huggel C, . Current and Future Glacier and Lake Assessment in the Deglaciating Vilcanota-Urubamba Basin, Peruvian Andes. Global and Planetary Change, 2018, 169: 105-118.

[40]

Dussaillant A, Benito G, Buytaert W, . Repeated Glacial-Lake Outburst Floods in Patagonia: An Increasing Hazard?. Natural Hazards, 2010, 54(2): 469-481.

[41]

Dussaillant I, Berthier E, Brun F, . Two Decades of Glacier Mass Loss along the Andes. Nature Geoscience, 2019, 12: 802-808.

[42]

Emmer A. Geomorphologically Effective Floods from Moraine-Dammed Lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 2017, 177: 220-234.

[43]

Emmer A, Vilímek V. Lake and Breach Hazard Assessment for Moraine-Dammed Lakes: An Example from the Cordillera Blanca (Peru). Natural Hazards and Earth System Sciences, 2013, 13: 1551-1565.

[44]

Emmer A, Klimeš J, Mergili M, . 882 Lakes of the Cordillera Blanca: An Inventory, Classification, Evolution and Assessment of Susceptibility to Outburst Floods. Catena, 2016, 147: 269-279.

[45]

Faeh, R., Mueller, R., Rousselot, P., et al., 2011. BASEMENT—Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation. VAW, ETH Zurich. http://www.basement.ethz.ch

[46]

Falaschi D, Bolch T, Lenzano M G, . New Evidence of Glacier Surges in the Central Andes of Argentina and Chile. Progress in Physical Geography: Earth and Environment, 2018, 42(6): 792-825.

[47]

Farías-Barahona D, Vivero S, Casassa G, . Geodetic Mass Balances and Area Changes of Echaurren Norte Glacier (Central Andes, Chile) between 1955 and 2015. Remote Sensing, 2019, 11(3): 260

[48]

Favier V, Wagnon P, Ribstein P. Glaciers of the Outer and Inner Tropics: A Different Behaviour but a Common Response to Climatic Forcing. Geophysical Research Letters, 2004, 31 16 L16403

[49]

Foresta L, Gourmelen N, Weissgerber F, . Heterogeneous and Rapid Ice Loss over the Patagonian Ice Fields Revealed by CryoSat-2 Swath Radar Altimetry. Remote Sensing of Environment, 2018, 211 2 441-455.

[50]

Francou B, Ribstein P, Semiond H, . Balances de Glaciares y Clima en Bolivia y Peru: Impacto de los Eventos ENSO. Bulletin de l’Institut Français d’Études Andines, 1995, 24: 661-670.

[51]

Frey H, Haeberli W, Linsbauer A, . A Multi-Level Strategy for Anticipating Future Glacier Lake Formation and Associated Hazard Potentials. Natural Hazards and Earth System Sciences, 2010, 10(2): 339-352.

[52]

Frey, H., García-Hernández, J., Huggel, C., et al., 2014. An Early Warning System for Lake Outburst Floods of the Laguna 513, Cordillera Blanca, Peru. In: International Conference on the Analysis and Management of Changing Risks for Natural Hazards. Nov. 18–19, 2014, Padua

[53]

Frey H, Huggel C, Chisolm R E, . Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaraz, Cordillera Blanca, Peru. Frontiers in Earth Science, 2018, 6: 210

[54]

Glasser N F, Holt T O, Evans Z D, . Recent Spatial and Temporal Variations in Debris Cover on Patagonian Glaciers. Geomorphology, 2016, 273(2): 202-216.

[55]

Gradstein R, Vanderpoorten A, Van Reenen G, . Mass Occurrence of the Liverwort Herbertus Sendtneri in a Glacial Lake in the Andes of Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2018, 42(164): 221-229.

[56]

Guardamino, L., Drenkhan, F., 2016. Evolución y Potencial Amenaza de Lagunas Glaciares En La Cordillera de Vilcabamba (Cusco y Apurímac, Perú) Entre 1991 y 2014. Revista de Glaciares y Ecosistemas de Montaña, (1): 21–36. https://doi.org/10.36580/rgem.i1.21-36

[57]

Haeberli W. Morphodynamische Aspekte Aktueller Gletscherhochwasser in den Schweizer Alpen. Regio Basiliensis, 1980, 21 58-78.

[58]

Haeberli W. Frequency and Characteristics of Glacier Floods in the Swiss Alps. Annals of Glaciology, 1983, 4: 85-90.

[59]

Hanshaw M N, Bookhagen B. Glacial Areas, Lake Areas, and Snow Lines from 1975 to 2012: Status of the Cordillera Vilcanota, Including the Quelccaya Ice Cap, Northern Central Andes, Peru. The Cryosphere, 2014, 8(2): 359-376.

[60]

Harrison S, Glasser N, Winchester V, . A Glacial Lake Outburst Flood Associated with Recent Mountain Glacier Retreat, Patagonian Andes. The Holocene, 2006, 16(4): 611-620.

[61]

Hoffmann, D., 2013. Comparison of Recently Formed Glacial Lakes in the Bolivian Andes and the Southern Alps of New Zealand: Differences and Similarities. Proceedings of High Mountains Adaptation Partnership Workshop, Huaraz, Peru

[62]

Hoffmann D, Weggenmann D. Filho W H. Climate Change Induced Glacier Retreat and Risk Management: Glacial Lake Outburst Floods (GLOFs) in the Apolobamba Mountain Range, Bolivia. Climate Change and Disaster Risk Management, 2013, Berlin: Springer, 71-87.

[63]

Huggel C, Kääb A, Haeberli W, . Remote Sensing Based Assessment of Hazards from Glacier Lake Outbursts: A Case Study in the Swiss Alps. Canadian Geotechnical Journal, 2002, 39(2): 316-330.

[64]

Huggel C, Kääb A, Haeberli W, . Regional-Scale GIS-Models for Assessment of Hazards from Glacier Lake Outbursts: Evaluation and Application in the Swiss Alps. Natural Hazards and Earth System Sciences, 2003, 3(6): 647-662.

[65]

ICIMOD Glacial Lakes and Glacial Lake Outburst Floods in Nepal, 2011, Kathmandu: International Centre for Integrated Mountain Development

[66]

Iturrizaga L. Glacial and Glacially Conditioned Lake Types in the Cordillera Blanca, Peru. Progress in Physical Geography: Earth and Environment, 2014, 38(5): 602-636.

[67]

Iturrizaga, L., Charrier, R., 2013. Glacialmorphological Reconstruction of Glacier Advances and Glacial Lake Outburst Floods at the Cachapoal Glacier in the Dry Central Andes of Chile (34°S). EGU General Assembly. Apr. 7–12, 2013, Vienna. EGU2013-2320

[68]

Ives J D, Shrestha R B, Mool P K. Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment, 2010, Kathmandu: International Centre for Integrated Mountain Development

[69]

Izurieta R, Campana A, Calles J, . Roldan G, Tundisi J, Jimenez B, . Calidad del agua en Ecuador. Calidad del Agua en las Americas: Riesgos y Oportunidades, 2019, Tlalpan, Mexico: IANAS, 661

[70]

Jacquet J, McCoy S W, McGrath D, . Hydrologic and Geomorphic Changes Resulting from Episodic Glacial Lake Outburst Floods: Rio Colonia, Patagonia, Chile. Geophysical Research Letters, 2017, 44(2): 854-864.

[71]

Kääb A, Huggel C, Fischer L, . Remote Sensing of Glacier- and Permafrost-Related Hazards in High Mountains: A Review. Natural Hazards and Earth System Sciences, 2005, 5: 527-554.

[72]

Khanal N R, Hu J M, Mool P. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas. Mountain Research and Development, 2015, 35(4): 351-364.

[73]

King W D V O. The Mendoza River Flood of 10–11 January 1934, Argentina. The Geographical Journal, 1934, 84(4): 321-326.

[74]

Klimeš J, Benesova M, Vilímek M, . The Construction of a Glacial Lake Outburst Flood Using HEC-RAS and Its Significance for Future Hazard Assessments: An Example from Lake 513 in the Cordillera Blanca, Peru. Natural Hazards, 2014, 71: 1617-1638.

[75]

Klimeš J, Novotný J, Novotná I, . Landslides in Moraines as Triggers of Glacial Lake Outburst Floods: Example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides, 2016, 13(6): 1461-1477.

[76]

Kougkoulos I. Glacial Lake Outburst Flood Risk in the Bolivian Andes, 2019, Manchester: Manchester Metropolitan University

[77]

Kougkoulos I, Cook S J, Jomelli V, . Use of Multi-Criteria Decision Analysis to Identify Potentially Dangerous Glacial Lakes. Science of the Total Environment, 2018, 621: 1453-1466.

[78]

Kougkoulos I, Cook S J, Edwards L A, . Modelling Glacial Lake Outburst Flood Impacts in the Bolivian Andes. Natural Hazards, 2018, 94(3): 1415-1438.

[79]

Liversedge L K. Turbidity Mapping and Prediction in Ice Marginal Lakes at the Bering Glacier System, Alaska, 2007, Ann Arbor: University of Michigan

[80]

Lizaga I, Gaspar L, Quijano L, . NDVI, 137Cs and Nutrients for Tracking Soil and Vegetation Development on Glacial Landforms in the Lake Parón Catchment (Cordillera Blanca, Perú). Science of the Total Environment, 2019, 651(3): 250-260.

[81]

Lliboutry L. Nieves y Glaciares de Chile, 1956, Santiago: Universidad de Chile

[82]

López-Moreno J I, Fontaneda S, Bazo J, . Recent Glacier Retreat and Climate Trends in Cordillera Huaytapallana, Peru. Global and Planetary Change, 2014, 112: 1-11.

[83]

López-Moreno J I, Valero-Garcés B, Mark B, . Hydrological and Depositional Processes Associated with Recent Glacier Recession in Yanamarey Catchment, Cordillera Blanca (Peru). Science of the Total Environment, 2017, 579(22): 272-282.

[84]

Loriaux T, Casassa G. Evolution of Glacial Lakes from the Northern Patagonia Icefield and Terrestrial Water Storage in a Sea-Level Rise Context. Global and Planetary Change, 2013, 102(2): 33-40.

[85]

Maas, H. G., Mulsow, C., Wendt, A., et al., 2012. Pilot Studies with Photogrammetric Glacier Lake Outburst Flood Early Warning System. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 39-B5, 22nd ISPRS Congress. Aug. 25-Sept. 1 2012, Melbourne. 523–527

[86]

Malmros J K, Mernild S H, Wilson R, . Glacier Area Changes in the Central Chilean and Argentinean Andes 1955–2013/14. Journal of Glaciology, 2016, 62(232): 391-401.

[87]

Marín V H, Tironi A, Paredes M A, . Modeling Suspended Solids in a Northern Chilean Patagonia Glacier-Fed Fjord: GLOF Scenarios under Climate Change Conditions. Ecological Modelling, 2013, 264(3): 7-16. 4

[88]

Martin S W. Glacial Lakes in the Bolivian Andes. The Geographical Journal, 1965, 131(4): 519-526.

[89]

Masiokas M H, Christie D A, Le-Quesne C, . Reconstructing the Annual Mass Balance of the Echaurren Norte Glacier (Central Andes, 33.5°S) Using Local and Regional Hydroclimatic Data. The Cryosphere, 2016, 10(2): 927-940.

[90]

Matta E, Giardino C, Boggero A, . Use of Satellite and in situ Reflectance Data for Lake Water Color Characterization in the Everest Himalayan Region. Mountain Research and Development, 2017, 37(1): 16-23.

[91]

McKillop R J, Clague J J. Statistical, Remote Sensing-Based Approach for Estimating the Probability of Catastrophic Drainage from Moraine-Dammed Lakes in Southwestern British Columbia. Global and Planetary Change, 2007, 56(1): 153-171. 2

[92]

Meerhoff E, Castro L R, Tapia F J, . Hydrographic and Biological Impacts of a Glacial Lake Outburst Flood (GLOF) in a Patagonian Fjord. Estuaries and Coasts, 2019, 42(1): 132-143.

[93]

Mergili M, Emmer A, Juricova A, . How Well can we Simulate Complex Hydro-Geomorphic Process Chains? The 2012 Multi-Lake Outburst Flood in the Santa Cruz Valley (Cordillera Blanca, Perú). Earth Surface Processes and Landforms, 2018, 43(7): 1373-1389.

[94]

Mergili M, Pudasaini S P, Emmer A, . Reconstruction of the 1941 GLOF Process Chain at Lake Palcacocha (Cordillera Blanca, Peru). Hydrology and Earth System Sciences, 2020, 24(1): 93-114.

[95]

Mernild S H, Beckerman A P, Yde J C, . Mass Loss and Imbalance of Glaciers along the Andes Cordillera to the Sub-Antarctic Islands. Global and Planetary Change, 2015, 133(B9): 109-119.

[96]

Michelutti N, Wolfe A P, Cooke C A, . Climate Change Forces New Ecological States in Tropical Andean Lakes. PLoS ONE, 2015, 10(2): e0115338

[97]

Michelutti N, Tapia P M, Labaj A L, . A Limnological Assessment of the Diverse Waterscape in the Cordillera Vilcanota, Peruvian Andes. Inland Waters, 2019, 9 3 395-407.

[98]

Milan R, Rignot E, Rivera A, . Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields. Geophysical Research Letters, 2019, 46: 6626-6635.

[99]

Mulsow, C., Koschitzki, R., Maas, H. G., 2013. Photogrammetric Monitoring of Glacier Margin Lakes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40-5/W3, The Role of Geomatics in Hydrogeological Risk. Feb. 7–28, 2013, Padua. 1–6

[100]

Palmer J. Chile’s Glacial Lakes Pose Newly Recognized Flood Threat. Science, 2017, 355(6329): 1004-1005.

[101]

Pasquini A I, Depetris P J. Southern Patagonia’s Perito Moreno Glacier, Lake Argentino, and Santa Cruz River Hydrological System: An Overview. Journal of Hydrology, 2011, 405(1): 48-56. 2

[102]

Paul F, Mölg N. Hasty Retreat of Glaciers in Northern Patagonia from 1985 to 2011. Journal of Glaciology, 2014, 60(224): 1033-1043.

[103]

Pepin N, Bradley R S, Diaz H F, . Elevation-Dependent Warming in Mountain Regions of the World. Nature Climate Change, 2015, 5: 424-430.

[104]

Pitte L P. Fluctuaciones de los Glaciares, en los Últimos 50 años, en las Cuencas Amarillo, Turbio, Canito y Potrerillos, San Juan, Argentina, 2014, Córdoba: National University of Córdoba

[105]

Pizarro J, Vergara P M, Cerda S, . Cooling and Eutrophication of Southern Chilean Lakes. Science of the Total Environment, 2016, 541(6): 683-691.

[106]

Portocarrero-Rodriguez C A. Safety Measures for Dangerous Glacial Lakes in the Cordillera Blanca, Peru, 2013, Washington DC, USA: U.S. Agency for International Development 1300 Pennsylvania Avenue

[107]

Pradhan N S, Bajracharya N, Bajracharya S R, . Community-Based Flood Early Warning System: Resource Manual, 2016, Kathmandu: International Centre for Integrated Mountain Development

[108]

Rabatel A, Francou B, Soruco A, . Current State of Glaciers in the Tropical Andes: A Multi-Century Perspective on Glacier Evolution and Climate Change. The Cryosphere, 2013, 7: 81-102.

[109]

Racoviteanu A E, Arnaud Y, Williams M W, . Decadal Changes in Glacier Parameters in the Cordillera Blanca, Peru, Derived from Remote Sensing. Journal of Glaciology, 2008, 54(186): 499-510.

[110]

Reynolds J M. McCall G J H, Laming D J C, Scott S C. The Identification and Mitigation of Glacier-Related Hazards: Examples from the Cordillera Blanca, Peru. Geohazards, 1992, London: Chapman and Hall, 143-157

[111]

Reynolds J M. Nakawo M, Raymond C F, Fountain A. On the Formation of Supraglacial Lakes on Debris-Covered Glaciers. Debris-Covered Glaciers, 2000, Wallingford: IAHS Press, 153-161

[112]

Rignot E, Rivera A, Casassa G. Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science, 2003, 302(5644): 434-437.

[113]

Richardson S D, Reynolds J M. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 2000, 65(37): 31-47. 66

[114]

Rivera A, Casassa G. Ice Elevation, Areal, and Frontal Changes of Glaciers from National Park Torres Del Paine, Southern Patagonia Icefield. Arctic, Antarctic, and Alpine Research, 2004, 36(4): 379-389.

[115]

Ross, L., Santos, I. P., Castro, L., et al., 2015. Response of Zooplankton Abundance to Internal Motions and a Glacial Lake Outburst Flood in a Patagonian Fjord. Proceedings of Rio Acoustics 2015, Rio de Janeiro

[116]

Ruiz Pereira S F, Veettil B K. Glacier Decline in the Central Andes (33°S): Context and Magnitude from Satellite and Historical Data. Journal of South American Earth Sciences, 2019, 94(2): 102249

[117]

Schoolmeester T, Johansen K S, Alfthan B, . The Andean Glacier and Water Atlas: The Impact of Glacier Retreat on Water Resources, 2018, Paris: UNESCO GRID, Arendal

[118]

Stansell N D, Rodbell D T, Abbott M B, . Proglacial Lake Sediment Records of Holocene Climate Change in the Western Cordillera of Peru. Quaternary Science Reviews, 2013, 70 21 1-14.

[119]

Somos-Valenzuela M A, Chisolm R E, Rivas D S, . Modeling a Glacial Lake Outburst Flood Process Chain: The Case of Lake Palcacocha and Huaraz, Peru. Hydrology and Earth System Sciences, 2016, 20(6): 2519-2543.

[120]

Sugiyama S, Minowa M, Sakakibara D, . Thermal Structure of Proglacial Lakes in Patagonia. Journal of Geophysical Research: Earth Surface, 2016, 121: 2270-2286.

[121]

Thorndycraft V R, Bendle J M, Benito G, . Glacial Lake Evolution and Atlantic-Pacific Drainage Reversals during Deglaciation of the Patagonia Ice Sheet. Quaternary Science Reviews, 2019, 203: 102-127.

[122]

UGRH Inventario de Lagunas Glaciares del Peru, 2014, Huaraz: Unidad de Glaciologia y Recursos Hidricos, Autoridad Nacional del Agua (ANA)

[123]

Urbanski J A, Wochna A, Bubak I, . Application of Landsat 8 Imagery to Regional-Scale Assessment of Lake Water Quality. International Journal of Applied Earth Observation and Geoinformation, 2016, 51(4): 28-36.

[124]

USAID The Glacial Lake Handbook: Reducing Risk from Dangerous Glacial Lakes in the Cordillera Blanca, Peru, 2014, Washington, D.C.: United States Agency for International Development

[125]

Van Colen W R, Mosquera P, Vanderstukken M, . Limnology and Trophic Status of Glacial Lakes in the Tropical Andes (Cajas National Park, Ecuador). Freshwater Biology, 2017, 62(3): 458-473.

[126]

Vargas T D. Informe Preliminar Sobre Algunas Lagunas de la Cordillera Blanca. Lima, Octubre, 1942, Huaraz: Unidad de Glaciología y Recursos Hídricos

[127]

Veettil B K, Kamp U. Remote Sensing of Glaciers in the Tropical Andes: A Review. International Journal of Remote Sensing, 2017, 38(23): 7101-7137.

[128]

Veettil B K, Kamp U. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences, 2019, 9(5): 196

[129]

Veettil B K, Bianchini N, de Andrade A M, . Glacier Changes and Related Glacial Lake Expansion in the Bhutan Himalaya, 1990–2010. Regional Environmental Change, 2016, 16 5 1267-1278.

[130]

Veettil B K, Souza S F, Simões J C, . Decadal Evolution of Glaciers and Glacial Lakes in the Apolobamba-Carabaya Region, Tropical Andes (Bolivia-Peru). Geografiska Annaler: Series A, Physical Geography, 2017, 99(3): 193-206.

[131]

Veettil B K, Wang S S, Souza S F, . Glacier Monitoring and Glacier-Climate Interactions in the Tropical Andes: A Review. Journal of South American Earth Sciences, 2017, 77(D5): 218-246.

[132]

Vilímek V, Klimeš J, Emmer A, . Geomorphologic Impacts of the Glacial Lake Outburst Flood from Lake No. 513 (Peru). Environmental Earth Sciences, 2015, 73(9): 5233-5244.

[133]

Vilímek V, Klimeš J, Červená L. Glacier-Related Landforms and Glacial Lakes in Huascarán National Park, Peru. Journal of Maps, 2016, 12(1): 193-202.

[134]

Vuille, M., 2013. Climate Change and Water Resources in the Tropical Andes. Inter-American Development Bank, IDB-TN-515

[135]

Vuille M, Bradley R S, Werner M, . 20th Century Climate Change in the Tropical Andes: Observations and Model Results. Climatic Change, 2003, 59: 75-99.

[136]

Vuille M, Francou B, Wagnon P, . Climate Change and Tropical Andean Glaciers: Past, Present and Future. Earth-Science Reviews, 2008, 89(3): 79-96. 4

[137]

Vuille M, Carey M, Huggel C, . Rapid Decline of Snow and Ice in the Tropical Andes: Impacts, Uncertainties and Challenges Ahead. Earth Science Reviews, 2017, 176: 195-213.

[138]

Wang X Y, Yang W. Water Quality Monitoring and Evaluation Using Remote Sensing Techniques in China: A Systematic Review. Ecosystem Health and Sustainability, 2019, 5(1): 47-56.

[139]

Warner K, Aff T, Henry K, . Where the Rain Falls: Climate Change, Food and Livelihood Security, and Migration, 2012, Bonn: CARE France and UNU-EHS

[140]

Westoby M J, Glasser N F, Brasington J, . Modelling Outburst Floods from Moraine-Dammed Glacial Lakes. Earth-Science Reviews, 2014, 134(F2): 137-159.

[141]

Wigmore O. Assessing Spatiotemporal Variability in Glacial Watershed Hydrology: Integrating Unmanned Aerial Vehicles and Field Hydrology, Cordillera Blanca, Peru, 2016, Columbus: Ohio State University

[142]

Wigmore, O., Mark, B., 2016. UAV Mapping of Debris Covered Glacier Change, Llaca Glacier, Cordillera Blanca, Peru. Proceedings of the 73rd Eastern Snow Conference 2016, Columbus. 1–10

[143]

Wigmore O, Mark B. Monitoring Tropical Debris-Covered Glacier Dynamics from High-Resolution Unmanned Aerial Vehicle Photogrammetry, Cordillera Blanca, Peru. The Cryosphere, 2017, 11(6): 2463-2480.

[144]

Wigmore O, Mark B. High Altitude Kite Mapping: Evaluation of Kite Aerial Photography (KAP) and Structure from Motion Digital Elevation Models in the Peruvian Andes. International Journal of Remote Sensing, 2018, 39(15): 4995-5015. 16

[145]

Wigmore O, Mark B, McKenzie J, . Sub-Metre Mapping of Surface Soil Moisture in Proglacial Valleys of the Tropical Andes Using a Multispectral Unmanned Aerial Vehicle. Remote Sensing of Environment, 2019, 222: 104-118.

[146]

Wilson R, Glasser N F, Reynolds J M, . Glacial Lakes of the Central and Patagonian Andes. Global and Planetary Change, 2018, 162(1–4): 275-291.

[147]

Wilson R, Harrison S, Reynolds J, . The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia. Geomorphology, 2019, 332(1–4): 51-65.

[148]

WMO Guidelines in Early Warning Systems and Application of Nowcasting and Warning Operations, 2010, Geneva: World Meteorological Organization

[149]

Worni R, Stoffel M, Huggel C, . Analysis and Dynamic Modeling of a Moraine Failure and Glacier Lake Outburst Flood at Ventisquero Negro, Patagonian Andes (Argentina). Journal of Hydrology, 2012, 444(2–4): 134-145. 445

[150]

Worni R, Huggel C, Clague J J, . Coupling Glacial Lake Impact, Dam Breach, and Flood Processes: A Modeling Perspective. Geomorphology, 2014, 224: 161-176.

[151]

Worni R, Huggel C, Stoffel M. Glacial Lakes in the Indian Himalayas—from an Area-Wide Glacial Lake Inventory to On-site and Modeling Based Risk Assessment of Critical Glacial Lakes. Science of the Tota: Environment, 2013, 468: S71-S84. 469

[152]

Yamada, T., Sharma, C. K., 1993. Glacier Lakes and Outburst Floods in the Nepal Himalaya. Proceedings of the Kathmandu Symposium Snow and Glacier Hydrology, November 1992, IAHS Publ. 218. 319–330

[153]

Yan H M, Yao Z J, Huang H Q, . Water Quality and Light Absorption Attributes of Glacial Lakes in Mount Qomolangma Region. Journal of Geographical Sciences, 2013, 23(5): 860-870.

[154]

Yao X J, Liu S Y, Sun M P, . Volume Calculation and Analysis of the Changes in Moraine-Dammed Lakes in the North Himalaya: A Case Study of Longbasaba Lake. Journal of Glaciology, 2012, 58(210): 753-760.

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/