Precipitation of High Mg-Calcite and Protodolomite Using Dead Biomass of Aerobic Halophilic Bacteria

Qigao Fan, Deng Liu, Dominic Papineau, Xuan Qiu, Hongmei Wang, Zhenbing She, Linduo Zhao

Journal of Earth Science ›› 2023, Vol. 34 ›› Issue (2) : 456-466.

Journal of Earth Science ›› 2023, Vol. 34 ›› Issue (2) : 456-466. DOI: 10.1007/s12583-020-1108-1
Article

Precipitation of High Mg-Calcite and Protodolomite Using Dead Biomass of Aerobic Halophilic Bacteria

Author information +
History +

Abstract

The microbial dolomite model has been used to interpret the origin of sedimentary dolomite. In this model, the formation of low-temperature protodolomite, an important precursor to sedimentary dolomite, can be facilitated either by actively metabolizing cells of anaerobic microbes and aerobic halophilic archaea or by their inactive biomass. Aerobic halophilic bacteria are widely distributed in (proto-)dolomite-depositing evaporitic environments and their biomass might serve as a template for the crystallization of protodolomite. To test this hypothesis, carbonation experiments were conducted using dead biomass of an aerobic halophilic bacterium (Exiguobacterium sp. strain JBHLT-3). Our results show that dead biomass of JBHLT-3 can accelerate Mg2+ uptake in carbonate mineral precipitates. In addition, the amount of Mg incorporated into Ca-Mg carbonates is proportional to the concentration of biomass. High Mg-calcite is produced with 0.25 or 0.5 g/L biomass, whereas protodolomite forms with 1 g/L biomass. This is confirmed by the main Raman peak of Ca-Mg carbonates, which shifts towards higher wavenumbers with increased Mg substitution. Microbial cells and their imprints are preserved on the surface of high Mg-calcite and protodolomite. Hence, this study furthers our understanding of the dolomitization within buried and dead microbial mats, which provides useful insights into the origin of ancient dolomite.

Keywords

protodolomite / high Mg-calcite / Mg-hydration effect / microbial dead biomass / biosignature / paleobiology

Cite this article

Download citation ▾
Qigao Fan, Deng Liu, Dominic Papineau, Xuan Qiu, Hongmei Wang, Zhenbing She, Linduo Zhao. Precipitation of High Mg-Calcite and Protodolomite Using Dead Biomass of Aerobic Halophilic Bacteria. Journal of Earth Science, 2023, 34(2): 456‒466 https://doi.org/10.1007/s12583-020-1108-1

References

Al Disi, Z. A., Jaoua, S., Bontognali, T. R. R., et al., 2017. Evidence of a Role for Aerobic Bacteria in High Magnesium Carbonate Formation in the Evaporitic Environment of Dohat Faishakh Sabkha in Qatar. Frontiers in Environmental Science, 5: Article 1. https://doi.org/10.3389/fenvs.2017.00001
Alibrahim A, Al-Gharabally D, Mahmoud H, . Proto-Dolomite Formation in Microbial Consortia Dominated by Halomonas Strains. Extremophiles, 2019, 23(6): 765-781.
CrossRef Google scholar
Arvidson R S. The Dolomite Problem; Control of Precipitation Kinetics by Temperature and Saturation State. American Journal of Science, 1999, 299(4): 257-288.
CrossRef Google scholar
Bischoff W D, Bishop F C, Mackenzie F T. Biogenically Produced Magnesian Calcite: Inhomogeneities in Chemical and Physical Properties: Comparison with Synthetic Phases. American Mineralogist, 1983, 68(11): 1183-1188
Bontognali T R R, McKenzie J A, Warthmann R J, . Microbially Influenced Formation of Mg-Calcite and Ca-Dolomite in the Presence of Exopolymeric Substances Produced by Sulphate-Reducing Bacteria. Terra Nova, 2014, 26(1): 72-77.
CrossRef Google scholar
Bontognali T R R, Vasconcelos C, Warthmann R J, . Dolomite Formation within Microbial Mats in the Coastal Sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 2010, 57: 824-844.
CrossRef Google scholar
Bontognali T R R, Vasconcelos C, Warthmann R J, . Dolomite-Mediating Bacterium Isolated from the Sabkha of Abu Dhabi (UAE). Terra Nova, 2012, 24(3): 248-254.
CrossRef Google scholar
Daye M, Higgins J, Bosak T. Formation of Ordered Dolomite in Anaerobic Photosynthetic Biofilms. Geology, 2019, 47(6): 509-512.
CrossRef Google scholar
Deng S C, Dong H L, G, . Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 2010, 278(3/4): 151-159.
CrossRef Google scholar
Dodd M S, Papineau D, Grenne T, . Evidence for Early Life in Earth’s Oldest Hydrothermal Vent Precipitates. Nature, 2017, 543(7643): 60-64.
CrossRef Google scholar
Edwards H G M, Jorge Villar S E, Jehlicka J, . FT-Raman Spectroscopic Study of Calcium-Rich and Magnesium-Rich Carbonate Minerals. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2273-2280.
CrossRef Google scholar
Gregg J M, Bish D L, Kaczmarek S E, . Mineralogy, Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment: A Review. Sedimentology, 2015, 62(6): 1749-1769.
CrossRef Google scholar
Grenne T, Slack J F. Bedded Jaspers of the Ordovician Løkken Ophiolite, Norway: Seafloor Deposition and Diagenetic Maturation of Hydrothermal Plume-Derived Silica-Iron Gels. Mineralium Deposita, 2003, 38(5): 625-639.
CrossRef Google scholar
Huang Y R, Yao Q Z, Li H, . Aerobically Incubated Bacterial Biomass-Promoted Formation of Disordered Dolomite and Implication for Dolomite Formation. Chemical Geology, 2019, 523: 19-30.
CrossRef Google scholar
Jiao D, King C, Grossfield A, . Simulation of Ca2 and Mg2 Solvation Using Polarizable Atomic Multipole Potential. The Journal of Physical Chemistry B, 2006, 110(37): 18553-18559.
CrossRef Google scholar
Kaczmarek S E, Thornton B P. The Effect of Temperature on Stoichiometry, Cation Ordering, and Reaction Rate in High-Temperature Dolomitization Experiments. Chemical Geology, 2017, 468: 32-41.
CrossRef Google scholar
Kenward P A, Fowle D A, Goldstein R H, . Ordered Low-Temperature Dolomite Mediated by Carboxyl-Group Density of Microbial Cell Walls. AAPG Bulletin, 2013, 97(11): 2113-2125.
CrossRef Google scholar
Kenward P A, Goldstein R H, González L A, . Precipitation of Low-Temperature Dolomite from an Anaerobic Microbial Consortium: The Role of Methanogenic Archaea. Geobiology, 2009, 7(5): 556-565.
CrossRef Google scholar
Land L. Failure to Precipitate Dolomite at 25 °C from Dilute Solution Despite 1 000 Fold Oversaturation After 32 Years. Aquatic Geochemistry, 1998, 4(3): 361-368.
CrossRef Google scholar
Li Y L, Zhao L M, Li Z Y, . Petrology of Garnet Amphibolites from the Hualong Group: Implications for Metamorphic Evolution of the Qilian Orogen, NW China. Journal of Earth Science, 2018, 29(5): 1102-1115.
CrossRef Google scholar
Lian B, Hu Q N, Chen J, . Carbonate Biomineralization Induced by Soil Bacterium Bacillus Megaterium. Geochimica et Cosmochimica Acta, 2006, 70(22): 5522-5535.
CrossRef Google scholar
Liu D, Fan Q G, Papineau D, . Precipitation of Protodolomite Facilitated by Sulfate-Reducing Bacteria: The Role of Capsule Extracellular Polymeric Substances. Chemical Geology, 2020, 533: 119415
CrossRef Google scholar
Liu D, Yu N, Papineau D, . The Catalytic Role of Planktonic Aerobic Heterotrophic Bacteria in Protodolomite Formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China. Geochimica et Cosmochimica Acta, 2019, 263 31-49.
CrossRef Google scholar
Liu D, Xu Y Y, Papineau D, . Experimental Evidence for Abiotic Formation of Low-Temperature Proto-Dolomite Facilitated by Clay Minerals. Geochimica et Cosmochimica Acta, 2019, 247: 83-95.
CrossRef Google scholar
Malone M J, Baker P A, Burns S J. Recrystallization of Dolomite: an Experimental Study from. Geochimica et Cosmochimica Acta, 1996, 60(12): 2189-2207.
CrossRef Google scholar
McKenzie J, Vasconcelos C. Dolomite Mountains and the Origin of the Dolomite Rock of which They Mainly Consist: Historical Developments and New Perspectives. Sedimentology, 2009, 56: 205-219.
CrossRef Google scholar
Nascimento G S, Eglinton T I, Haghipour N, . Oceanographic and Sedimentological Influences on Carbonate Geochemistry and Mineralogy in Hypersaline Coastal Lagoons, Rio de Janeiro State, Brazil. Limnology and Oceanography, 2019, 64(6): 2605-2620.
CrossRef Google scholar
Ngia N R, Hu M Y, da Gao, . Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in West-Central Tarim Basin, NW China. Journal of Earth Science, 2019, 30(1): 176-193.
CrossRef Google scholar
Papineau D, de Gregorio B, Fearn S, . Nanoscale Petrographic and Geochemical Insights on the Origin of the Palaeoproterozoic Stromatolitic Phosphorites from Aravalli Supergroup, India. Geobiology, 2016, 14(1): 3-32.
CrossRef Google scholar
Perrin J, Vielzeuf D, Laporte D, . Raman Characterization of Synthetic Magnesian Calcites. American Mineralogist, 2016, 101(11): 2525-2538.
CrossRef Google scholar
Petrash D A, Bialik O M, Bontognali T R R, . Microbially Catalyzed Dolomite Formation: From Near-Surface to Burial. Earth-Science Reviews, 2017, 171: 558-582.
CrossRef Google scholar
Qiu X, Wang H M, Yao Y C, . High Salinity Facilitates Dolomite Precipitation Mediated by Haloferax Volcanii DS52. Earth and Planetary Science Letters, 2017, 472: 197-205.
CrossRef Google scholar
Roberts J A, Bennett P C, González L A, . Microbial Precipitation of Dolomite in Methanogenic Groundwater. Geology, 2004, 32(4): 277-280.
CrossRef Google scholar
Roberts J A, Kenward P A, Fowle D A, . Surface Chemistry Allows for Abiotic Precipitation of Dolomite at Low Temperature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14540-14545.
CrossRef Google scholar
Rodriguez-Blanco J D, Shaw S, Benning L G. A Route for the Direct Crystallization of Dolomite. American Mineralogist, 2015, 100(5/6): 1172-1181.
CrossRef Google scholar
Romanek C S, Jiménez-López C, Navarro A R, . Inorganic Synthesis of Fe-Ca-Mg Carbonates at Low Temperature. Geochimica et Cosmochimica Acta, 2009, 73(18): 5361-5376.
CrossRef Google scholar
Rouillard J, García-Ruiz J M, Gong J, . A Morphogram for Silica-Witherite Biomorphs and Its Application to Microfossil Identification in the Early Earth Rock Record. Geobiology, 2018, 16(3): 279-296.
CrossRef Google scholar
Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, . Presence of Sulfate does not Inhibit Low-Temperature Dolomite Precipitation. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139.
CrossRef Google scholar
Sánchez-Román M, Vasconcelos C, Schmid T, . Aerobic Microbial Dolomite at the Nanometer Scale: Implications for the Geologic Record. Geology, 2008, 36: 879-882.
CrossRef Google scholar
Shen Z Z, Szlufarska I, Brown P E, . Investigation of the Role of Polysaccharide in the Dolomite Growth at Low Temperature by Using Atomistic Simulations. Langmuir: The ACS Journal of Surfaces and Colloids, 2015, 31(38): 10435-10442.
CrossRef Google scholar
Slaughter M, Hill R J. The Influence of Organic Matter in Organogenic Dolomitization. Journal of Sedimentary Research, 1991, 61(2): 296-303.
CrossRef Google scholar
van Lith Y, Warthmann R, Vasconcelos C, . Sulphate-Reducing Bacteria Induce Low-Temperature Ca-Dolomite and High Mg-Calcite Formation. Geobiology, 2003, 1(1): 71-79.
CrossRef Google scholar
Vasconcelos C, McKenzie J A, Bernasconi S, . Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures. Nature, 1995, 377(6546): 220-222.
CrossRef Google scholar
Wang D B, Wallace A F, de Yoreo J J, . Carboxylated Molecules Regulate Magnesium Content of Amorphous Calcium Carbonates during Calcification. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21511-21516.
CrossRef Google scholar
Wang R C, Wang H M, Xiang X, . Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 2018, 29(4): 969-976.
CrossRef Google scholar
Wang X, Xu X X, Ye Y, . In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties. Journal of Earth Science, 2019, 30(5): 964-976.
CrossRef Google scholar
Warren J. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
CrossRef Google scholar
Wright D T, Wacey D. Precipitation of Dolomite Using Sulphate-Reducing Bacteria from the Coorong Region, South Australia: Significance and Implications. Sedimentology, 2005, 52(5): 987-1008.
CrossRef Google scholar
Xu J, Yan C, Zhang F F, . Testing the Cation-Hydration Effect on the Crystallization of Ca-Mg-CO3 Systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17750-17755.
CrossRef Google scholar
Zhang F, Xu H, Konishi H, . Polysaccharide-Catalyzed Nucleation and Growth of Disordered Dolomite: A Potential Precursor of Sedimentary Dolomite. American Mineralogist, 2012, 97(4): 556-567.
CrossRef Google scholar
Zhang F, Xu H, Shelobolina E S, . The Catalytic Effect of Bound Extracellular Polymeric Substances Excreted by Anaerobic Microorganisms on Ca-Mg Carbonate Precipitation: Implications for the “Dolomite Problem”. American Mineralogist, 2015, 100(2/3): 483-494.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/