Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis?

Luca Medici , Martina Savioli , Annalisa Ferretti , Daniele Malferrari

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (3) : 501 -511.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (3) : 501 -511. DOI: 10.1007/s12583-020-1094-3
Article

Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis?

Author information +
History +
PDF

Abstract

Conodont elements are calcium phosphate (apatite structure) mineralized remains of the cephalic feeding apparatus of an extinct marine organism. Due to the high affinity of apatite for rare earth elements (REE) and other high field strength elements (HFSE), conodont elements were frequently assumed to be a reliable archive of sea-water composition and changes that had occurred during diagenesis. Likewise, the crystallinity index of bioapatite, i.e., the rate of crystallinity of biologically mediated apatite, should be generally linearly dependent on diagenetic alteration as the greater (and longer) the pressure and temperature to which a crystal is exposed, the greater the resulting crystallinity. In this study, we detected the uptake of HFSE in conodont elements recovered from a single stratigraphic horizon in the Upper Ordovician of Normandy (France). Assuming therefore that all the specimens have undergone an identical diagenetic history, we have assessed whether conodont taxonomy (and morphology) impacts HFSE uptake and crystallinity index. We found that all conodont elements are characterized by a clear diagenetic signature, with minor but significant differences among taxa. These distinctions are evidenced also by the crystallinity index values which show positive correlations with some elements and, accordingly, with diagenesis; however, correlations with the crystallinity index strongly depend on the method adopted for its calculation.

Keywords

bioapatite / crystallinity index / HFSE / laser ablation / mass spectrometry / microdiffraction / Normandy / Ordovician

Cite this article

Download citation ▾
Luca Medici, Martina Savioli, Annalisa Ferretti, Daniele Malferrari. Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis?. Journal of Earth Science, 2021, 32(3): 501-511 DOI:10.1007/s12583-020-1094-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armstrong H A, Pearson D G, Griselin M. Thermal Effects on Rare Earth Element and Strontium Isotope Chemistry in Single Conodont Elements. Geochimica et Cosmochimica Acta, 2001, 65(3): 435-441.

[2]

Bergström S M, Ferretti A. Conodonts in the Upper Ordovician Keisley Limestone of Northern England: Taxonomy, Biostratigraphical Significance and Biogeographical Relationships. Papers in Palaeontology, 2015, 1(1): 1-32.

[3]

Bright C A, Cruse A M, Lyons T W, . Seawater Rare-Earth Element Patterns Preserved in Apatite of Pennsylvanian Conodonts?. Geochimica et Cosmochimica Acta, 2009, 73(6): 1609-1624.

[4]

Brigatti M F, Malferrari D, Medici L, . Crystal Chemistry of Apatites from the Tapira Carbonatite Complex, Brazil. European Journal of Mineralogy, 2004, 16(4): 677-685.

[5]

Burnett R D, Hall J C. Significance of Ultrastructural Features in Etched Conodonts. Journal of Paleontology, 1992, 66(2): 266-276.

[6]

Chen J B, Algeo T J, Zhao L S, . Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 2015, 149: 181-202.

[7]

Collins M J, Nielsen-Marsh C M, Hiller J, . The Survival of Organic Matter in Bone: A Review. Archaeometry, 2002, 44(3): 383-394.

[8]

Cruse, A. M., Lyons, T. W., 2000. Sedimentology and Geochemistry of the Hushpuckney and Upper Tackett Shales Cyclothem Models Revisited. In: Johnson, K. S., ed., Marine Clastics in the Southern Midcontinent, 1997 Symposium. Oklahoma Geological Survey Circular, 103: 185–194

[9]

Del Moral B, Sarmiento G N. Conodontos del Katiense (Ordo-vicico Superior) del Sector Meridional de la Zone Centroibérica (España). Revista de Micropaleontologia, 2008, 40: 169-245.

[10]

Dzik J. Evolution of Late Ordovician High-Latitude Conodonts and Dating of Gondwana Glaciations. Bollettino della Società Paleontologica Italiana, 1999, 37(2): 237-253.

[11]

Dzik J. Ordovician Conodonts and the Tornquist Lineament. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549 109157

[12]

Ferretti A, Bancroft A M, Repetski J E. GECkO: Global Events Impacting Conodont Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549 109677

[13]

Ferretti, A., Malferrari, D., Savioli, M., et al., 2020b. ‘Conodont Pearls’ do not Belong to Conodonts. Lethaia. https://doi.org/10.1111/let.12403

[14]

Ferretti A, Barnes C R. Upper Ordovician Conodonts from the Kalkbank Limestone of Thuringia, Germany. Palaeontology, 1997, 40(1): 15-42.

[15]

Ferretti A, Bergström S M, Barnes C R. Katian (Upper Ordovician) Conodonts from Wales. Palaeontology, 2014, 57(4): 801-831.

[16]

Ferretti A, Bergström S M, Sevastopulo G D. Katian Conodonts from the Portrane Limestone: The First Ordovician Conodont Fauna Described from Ireland. Bollettino della Società Paleontologica Italiana, 2014, 53(2): 105-119.

[17]

Ferretti A, Messori A, Bergström S M. Composition and Significance of the Katian (Upper Ordovician) Conodont Fauna of the Vaux Limestone (‘Calcaire des Vaux’) in Normandy, France. Estonian Journal of Earth Sciences, 2014, 63(4): 214-219.

[18]

Ferretti A, Malferrari D, Medici L, . Diagenesis does not Invent anything New: Precise Replication of Conodont Structures by Secondary Apatite. Scientific Reports, 2017, 7 1 1624

[19]

Ferretti A, Schönlaub H P. New Conodont Faunas from the Late Ordovician of the Central Carnic Alps, Austria. Bollettino della Società Paleontologica Italiana, 2001, 40(1): 3-15.

[20]

Ferretti A, Serpagli E. First Record of Ordovician Conodonts from Southwestern Sardinia. Rivista Italiana di Paleontologia e Stratigrafia, 1991, 97(1): 27-34.

[21]

Ferretti A, Serpagli E. Late Ordovician Conodont Faunas from Southern Sardinia, Italy: Biostratigraphic and Paleogeographic Implications. Bollettino della Società Paleontologica Italiana, 1999, 37(2): 215-236. 3

[22]

Frank-Kamenetskaya O V, Rozhdestvenskaya I V, Rosseeva E V, . Refinement of Apatite Atomic Structure of Albid Tissue of Late Devon Conodont. Crystallography Reports, 2014, 59(1): 41-47.

[23]

Girard C, Albarède F. Trace Elements in Conodont Phosphates from the Frasnian/Famennian Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 126(1): 195-209. 2

[24]

Grandjean-Lécuyer P, Feist R, Albarède F. Rare Earth Elements in Old Biogenic Apatites. Geochimica et Cosmochimica Acta, 1993, 57(11): 2507-2514.

[25]

Grandjean P, Cappetta H, Michard A, . The Assessment of REE Patterns and 143Nd/144Nd Ratios in Fish Remains. Earth and Planetary Science Letters, 1987, 84(2): 181-196. 3

[26]

Heckel P H, Baesemann J F. Environmental Interpretation of Conodont Distribution in Upper Pennsylvanian (Missourian) Megacy-clothems in Eastern Kansas. AAPG Bulletin, 1975, 59: 486-509.

[27]

Henningsmoen, G., 1948. The Tretaspis Series of the Kullatorp Core. In: Waern, B., Thorslund, P., Henningsmoen, G., eds., Deep Boring through Ordovician and Silurian Strata at Kinnekulle, Vestergötland. Bulletin of the Geological Institution of the University of Uppsala, 32: 374–432

[28]

Herwartz D, Tütken T, Jochum K P, . Rare Earth Element Systematics of Fossil Bone Revealed by LA-ICPMS Analysis. Geochimica et Cosmochimica Acta, 2013, 103: 161-183.

[29]

Herwartz D, Tütken T, Münker C, . Timescales and Mechanisms of REE and Hf Uptake in Fossil Bones. Geochimica et Cosmochimica Acta, 2011, 75(1): 82-105.

[30]

Holmden C, Creaser R A, Muehlenbachs K, . Isotopic and Elemental Systematics of Sr and Nd in 454 Ma Biogenic Apatites: Implications for Paleoseawater Studies. Earth and Planetary Science Letters, 1996, 142(3): 425-437. 4

[31]

Holser W T. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1): 309-323. 2/3/4

[32]

Keenan S W. From Bone to Fossil: A Review of the Diagenesis of Bioapatite. American Mineralogist, 2016, 101(9): 1943-1951.

[33]

Keenan S W, Engel A S. Early Diagenesis and Recrystallization of Bone. Geochimica et Cosmochimica Acta, 2017, 196: 209-223.

[34]

Kim J-H, Torres M E, Haley B A, . The Effect of Diagenesis and Fluid Migration on Rare Earth Element Distribution in Pore Fluids of the Northern Cascadia Accretionary Margin. Chemical Geology, 2012, 291: 152-165.

[35]

Knüpfer J. Zur Fauna und Biostratigraphie des Ordoviziums (Gräfenthaler Schichten) in Thüringen. Freiberger Forschungshefte, 1967, C220: 1-119.

[36]

Kocsis L, Trueman C N, Palmer M R. Protracted Diagenetic Alteration of REE Contents in Fossil Bioapatites: Direct Evidence from Lu-Hf Isotope Systematics. Geochimica et Cosmochimica Acta, 2010, 74(21): 6077-6092.

[37]

Kohn M J, Moses R J. Trace Element Diffusivities in Bone Rule out Simple Diffusive Uptake during Fossilization but Explain in vivo Uptake and Release. Proceedings of the National Academy of Sciences, 2013, 110(2): 419-424.

[38]

Kowal-Linka M, Jochum K P, Surmik D. LA-ICP-MS Analysis of Rare Earth Elements in Marine Reptile Bones from the Middle Triassic Bonebed (Upper Silesia, S Poland): Impact of Long-Lasting Diagenesis, and Factors Controlling the Uptake. Chemical Geology, 2014, 363: 213-228.

[39]

Lécuyer C, Reynard B, Grandjean P. Rare Earth Element Evolution of Phanerozoic Seawater Recorded in Biogenic Apatites. Chemical Geology, 2004, 204(1): 63-102. 2

[40]

LeGeros R Z. Apatites in Biological Systems. Progress in Crystal Growth and Characterization, 1981, 4(1): 1-45. 2

[41]

Li Y, Zhao L S, Chen Z-Q, . Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 6-16.

[42]

Liao J L, Sun X M, Li D F, . New Insights into Nanostructure and Geochemistry of Bioapatite in REE-Rich Deep-Sea Sediments: LA-ICP-MS, TEM, and Z-Contrast Imaging Studies. Chemical Geology, 2019, 512: 58-68.

[43]

Lindström M, Pelhate A. Présence de Conodontes dans les Calcaires de Rosan (Ordovicien moyen a Supérieur, Massif Armoricain). Colloque Ordovicien-Silurien, Brest 1971. Mémoire du Bureau de Recherches Géologiques et Minières, 1971, 73: 89-91.

[44]

Malferrari D, Ferretti A, Mascia M T, . How much can We Trust Major Element Quantification in Bioapatite Investigation?. ACS Omega, 2019, 4(18): 17814-17822.

[45]

Martin E E, Scher H D. Preservation of Seawater Sr and Nd Isotopes in Fossil Fish Teeth: Bad News and Good News. Earth and Planetary Science Letters, 2004, 220(1): 25-39. 2

[46]

McArthur J M, Walsh J N. Rare-Earth Geochemistry of Phosphorites. Chemical Geology, 1984, 47(3): 191-220. 4

[47]

McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4). https://doi.org/10.1029/2000gc000109

[48]

Medici L, Malferrari D, Savioli M, . Mineralogy and Crystallization Patterns in Conodont Bioapatite from First Occurrence (Cambrian) to Extinction (end-Triassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549 109098

[49]

Nardelli M P, Malferrari D, Ferretti A, . Zinc Incorporation in the Miliolid Foraminifer Pseudotriloculina rotunda under Laboratory Conditions. Marine Micropaleontology, 2016, 126: 42-49.

[50]

Nothdurft L D, Webb G E, Kamber B S. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.

[51]

Nozaki Y, Zhang J, Amakawa H. The Fractionation between Y and Ho in the Marine Environment. Earth and Planetary Science Letters, 1997, 148(1): 329-340. 2

[52]

Paris F, Pelhate A, Weyant M. Conodontes ashgilliens dans la Formation de Rosan, coupe de Lostmarc’h (Finistère, Massif Armoricain). Conséquences Paléogéographiques. Bulletin de la Société Géologique et Mineralogique de Bretagne, 1981, 13(2): 15-35.

[53]

Pattan J N, Pearce N J G, Mislankar P G. Constraints in Using Cerium-Anomaly of Bulk Sediments as an Indicator of Paleo Bottom Water Redox Environment: A Case Study from the Central Indian Ocean Basin. Chemical Geology, 2005, 221(3): 260-278. 4

[54]

Peppe D J, Reiners P W. Conodont (U-Th)/He Thermochronology: Initial Results, Potential, and Problems. Earth and Planetary Science Letters, 2007, 258(3): 569-580. 4

[55]

Person A, Bocherens H, Saliège J F, . Early Diagenetic Evolution of Bone Phosphate: An X-Ray Diffractometry Analysis. Journal of Archaeological Science, 1995, 22(2): 211-221.

[56]

Picard S, Lécuyer C, Barrat J A, . Rare Earth Element Contents of Jurassic Fish and Reptile Teeth and Their Potential Relation to Seawater Composition (Anglo-Paris Basin, France and England). Chemical Geology, 2002, 186(1): 1-16. 2

[57]

Pietsch C, Bottjer D J. Comparison of Changes in Ocean Chemistry in the Early Triassic with Trends in Diversity and Ecology. Journal of Earth Science, 2010, 21(S1): 147-150.

[58]

Pucéat E, Reynard B, Lécuyer C. Can Crystallinity be Used to Determine the Degree of Chemical Alteration of Biogenic Apatites?. Chemical Geology, 2004, 205(1): 83-97. 2

[59]

Reynard B, Lécuyer C, Grandjean P. Crystal-Chemical Controls on Rare-Earth Element Concentrations in Fossil Biogenic Apatites and Implications for Paleoenvironmental Reconstructions. Chemical Geology, 1999, 155(3): 233-241. 4

[60]

Sanz-López J, Blanco-Ferrera S. Overgrowths of Large Authigenic Apatite Crystals on the Surface of Conodonts from Cantabrian Limestones (Spain). Facies, 2012, 58(4): 707-726.

[61]

Shen J, Algeo T J, Zhou L, . Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects. Geobiology, 2012, 10(1): 82-103.

[62]

Shields G, Stille P. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 2001, 175(1): 29-48. 2

[63]

Shields G, Webb G E. Has the REE Composition of Seawater Changed over Geological Time?. Chemical Geology, 2004, 204: 103-107.

[64]

Sholkovitz E, Shen G T. The Incorporation of Rare Earth Elements in Modern Coral. Geochimica et Cosmochimica Acta, 1995, 59(13): 2749-2756.

[65]

Smith C I, Craig O E, Prigodich R V, . Diagenesis and Survival of Osteocalcin in Archaeological Bone. Journal of Archaeological Science, 2005, 32(1): 105-113.

[66]

Song H J, Wignall P B, Song H Y, . Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 2019, 30(2): 236-243.

[67]

Sweet W C, Bergström S M. Conodont Provinces and Biofacies of the Late Ordovician. In: Clark, D. L., ed., Conodont Biofacies and Provincialism. Geological Society of America Special Paper, 1984, 196: 69-87.

[68]

Sweet W C, Donoghue P C J. Conodonts: Past, Present, Future. Journal of Paleontology, 2001, 75(6): 1174-1184.

[69]

Toyoda K, Tokonami M. Diffusion of Rare-Earth Elements in Fish Teeth from Deep-Sea Sediments. Nature, 1990, 345: 607-609.

[70]

Trotter J A, Barnes C R, McCracken A D. Rare Earth Elements in Conodont Apatite: Seawater or Pore-Water Signatures?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 462: 92-100.

[71]

Trotter J A, Eggins S M. Chemical Systematics of Conodont Apatite Determined by Laser Ablation ICPMS. Chemical Geology, 2006, 233(3): 196-216. 4

[72]

Trotter J A, Gerald J D F, Kokkonen H, . New Insights into the Ultrastructure, Permeability, and Integrity of Conodont Apatite Determined by Transmission Electron Microscopy. Lethaia, 2007, 40(2): 97-110.

[73]

Trueman C N, Privat K, Field J. Why do Crystallinity Values Fail to Predict the Extent of Diagenetic Alteration of Bone Mineral?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 266(3): 160-167. 4

[74]

Trueman, C. N., Tuross, N., 2002. Trace Elements in Recent and Fossil Bone. In: Kohn, M. J., Rakovan, J., Hughes, J. M., eds., Phosphates: Geochemical, Geobiological and Materials Importance. Review in Mineralogy and Geochemistry, 48: 489–521

[75]

Vidal M, Dabard M-P, Gourvennec R, . Le Palèozoïque de la Presqu’Île de Crozon, Massif Armoricain (France). Gèologie de la France, 2011, 1: 3-45.

[76]

Webb G E, Kamber B S. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.

[77]

Webb G E, Nothdurft L D, Kamber B S, . Rare Earth Element Geochemistry of Scleractinian Coral Skeleton during Meteoric Diagenesis: A Sequence through Neomorphism of Aragonite to Calcite. Sedimentology, 2009, 56(5): 1433-1463.

[78]

Wenzel B, Lécuyer C, Joachimski M M. Comparing Oxygen Isotope Records of Silurian Calcite and Phosphate—δ18O Compositions of Brachiopods and Conodonts. Geochimica et Cosmochimica Acta, 2000, 64(11): 1859-1872.

[79]

Weyant M, Dorè F, Le Gall J, . Un épisode Calcaire ashgillien dans l’est du Massif Armoricain: Incidence Sur l’âge des Dépôts Glacio-Marins fini-Ordoviciens. Comptes Rendus de l’Académie des Sciences, 1977, 284(D): 1147-1149.

[80]

Wheeley J R, Smith M P, Boomer I. Oxygen Isotope Variability in Conodonts: Implications for Reconstructing Palaeozoic Palaeoclimates and Palaeoceanography. Journal of the Geological Society, 2012, 169(3): 239-250.

[81]

Wright J, Schrader H, Holser W T. Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite. Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.

[82]

Wright J, Colling A. Seawater: Its Composition, Properties and Behavior, 1995, Second ed, Oxford: Pergamon, 168.

[83]

Wright, J., Seymour, R. S., Shaw, H. F., 1984. REE and Nd Isotopes in Conodont Apatite: Variations with Geological Age and Depositional Environment. In: Clark, D. L., ed., Conodont Biofacies and Provincialism. Geological Society of America Special Paper, 196: 325–340

[84]

Xin H, Jiang S Y, Yang J H, . Rare Earth Element Geochemistry of Phosphatic Rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China. Journal of Earth Science, 2016, 27(2): 204-210.

[85]

Zhang L, Algeo T J, Cao L, . Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 176-197.

[86]

Zhang L, Cao L, Zhao L S, . Raman Spectral, Elemental, Crystallinity, and Oxygen-Isotope Variations in Conodont Apatite during Diagenesis. Geochimica et Cosmochimica Acta, 2017, 210: 184-207.

[87]

Zhang J, Nozaki Y. Rare Earth Elements and Yttrium in Seawater: ICP-MS Determinations in the East Caroline, Coral Sea, and South Fiji Basins of the Western South Pacific Ocean. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644.

[88]

Zhang J, Amakawa H, Nozaki Y. The Comparative Behaviors of Yttrium and Lanthanides in the Seawater of the North Pacific. Geophysical Research Letters, 1994, 21(24): 2677-2680.

[89]

Zhao L S, Chen Z-Q, Algeo T J, . Rare-Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis?. Global and Planetary Change, 2013, 105: 135-151.

[90]

Žigaitė Ž, Qvarnström M, Bancroft A, . Trace and Rare Earth Element Compositions of Silurian Conodonts from the Vesiku Bone Bed: Histological and Palaeoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549 109449

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/