Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran

Mohammad Parandavar , Jalil Sadouni

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (4) : 1022 -1034.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (4) : 1022 -1034. DOI: 10.1007/s12583-020-1091-6
Article

Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran

Author information +
History +
PDF

Abstract

Hydrocarbon source potential of the Paleogene Pabdeh Formation was studied by means of organic geochemistry and distribution of calcareous nannofossils. Based on the results, an Eocene-aged organic matter (OM)-rich interval was identified and traced across different parts of the North Dezful zone and partly Abadan Plain. In order to characterize the OM quality and richness of the studied intervals, Rock-Eval pyrolysis and nannofossils evaluation were performed, and the geochemical data collected along selected wells were correlated to capture the variations of thickness and source potential of the OM-rich interval. Accordingly, remarkable variations were identified within the depth ranges of 2 480–2 552 m and also 2 200–2 210 m, which were attributed to the maximum increase in the rate of growth R-selected species. This increase in the productivity rate was found to be well correlated to high Rock-Eval total organic carbon (TOC) and hydrogen index (HI) values. Given that the maturity of Pabdeh Formation in the studied area was found to have reached the oil window, we expect significant hydrocarbon generation (Type II kerogen), making the play economically highly promising.

Keywords

calcareous nannofossils / Rock-Eval / organic geochemistry / Paleogene / paleo-productivity / diversity / Dezful

Cite this article

Download citation ▾
Mohammad Parandavar, Jalil Sadouni. Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran. Journal of Earth Science, 2021, 32(4): 1022-1034 DOI:10.1007/s12583-020-1091-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aghanabati A. Geology of Iran, 2004, Tehran: Geological Survey of Iran, 586.

[2]

Alizadeh B, Sarafdokht H, Rajabi M, . Organic Geochemistry and Petrography of Kazhdumi (Albian-Cenomanian) and Pabdeh (Paleogene) Potential Source Rocks in Southern Part of the Dezful Embayment, Iran. Organic Geochemistry, 2012, 49: 36-46.

[3]

Andruleit H. Status of the Java Upwelling Area (Indian Ocean) during the Oligotrophic Northern Hemisphere Winter Monsoon Season as Revealed by Coccolithophores. Marine Micropaleontology, 2007, 64(1): 36-51. 2

[4]

Aubry M P. Handbook of Cenozoic Calcareous Nannoplankton. Book 3: Ortholithae (Pentaliths, and Others), Heliotithae (Fasciculiths, Sphenoliths and Others), 1989, New York: Micropaleontology Press, American Museum of Natural History, 279.

[5]

Behar F, Beaumont V, Penteado D B. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 2001, 56(2): 111-134.

[6]

Berberian M, King G C P. Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 1981, 18(2): 210-265.

[7]

Beydoun Z R, Sikander A H. The Red Sea—Gulf of Aden: Re-Assessment of Hydrocarbon Potential. Marine and Petroleum Geology, 1992, 9(5): 474-485.

[8]

Boersma A, Premoli Silva I, Hallock P. Aubry M P, Lucas S, Berggren W A. Trophic Models for the Well-Mixed and Poorly Mixed Warm Oceans across the Paleocene-Eocene Epoch Boundary. Late Paleocene-Early Eocene Climatic and Biotic Evolution, 1998, New York: Columbia University Press, 204-213.

[9]

Bordenave M L, Burwood R. Source Rock Distribution and Maturation in the Zagros Orogenic Belt: Provenance of the Asmari and Bangestan Reservoir Oil Accumulations. Organic Geochemistry, 1990, 16(1): 369-387. 2/3

[10]

Bordenave M L, Hegre J A. Current Distribution of Oil and Gas Fields in the Zagros Fold Belt of Iran and Contiguous Offshore as the Result of the Petroleum Systems. Geological Society, London, Special Publications, 2010, 330(1): 291-353.

[11]

Bordenave M L, Huc A Y. The Cretaceous Source Rocks in the Zagros Foothills of Iran. Revue De l’Institut Français Du Pétrole, 1995, 50(6): 727-752.

[12]

Bown P R, Young J R. Bown P R. Techniques. Calcareous Nannofossils Biostratigraphy, 1998, London: Chapman and Hall

[13]

Bralower T J. Evidence of Surface Water Oligotrophy during the Paleocene-Eocene Thermal Maximum: Nannofossil Assemblage Data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography, 2002, 17 2 1023

[14]

Bukry D. Biostratigraphy of Cenozoic Marine Sediment by Calcareous Nannofossils. Micropaleontology, 1978, 24(1): 44-60.

[15]

Catuneanu O. Principles of Sequence Stratigraphy, 2006, 1st Edition, Amsterdam: Elsevier, 375.

[16]

Elhaï H. Lexique Stratigraphique International. Annales De Géographie, 1963, 72 394 720

[17]

Erba E. Middle Cretaceous Calcareous Nannofossils from the Western Pacific (ODP Leg 129): Evidence for Paleoequatorial Crossings. Proceedings of the Ocean Drilling Program. Scientific Results, 1992, 129: 189-201.

[18]

Erba E, de Castradori D, Guasti G, . Calcareous Nannofossils and Milankovitch Cycles: The Example of the Albian Gault Clay Formation (Southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93(1): 47-69. 2

[19]

Espitalie, J., Madec, M., Tissot, B., et al., 1977. Source Rock Characterization Method for Petroleum Exploration. Offshore Technology Conference, Houston, Texas. https://doi.org/10.4043/2935-ms

[20]

Gartner S. Paleoceanography of the Mid-Pleistocene. Marine Micropaleontology, 1988, 13(1): 23-46.

[21]

Giunta S, Negri A, Morigi C, . Coccolithophorid Ecostratigraphy and Multi-Proxy Paleoceanographic Reconstruction in the Southern Adriatic Sea during the Last Deglacial Time (Core AD91-17). Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 190: 39-59.

[22]

Hallock P. Stanley G D. Coral Reefs, Carbonate Sedimentation, Nutrients, and Global Change. The History and Sedimentology of Ancient Reef Ecosystems, 2001, New York: Kluwer Academic/Plenum Publishers, 387-427

[23]

Hallock P, Premoli Silva I, Boersma A. Similarities between Planktonic and Larger Foraminiferal Evolutionary Trends through Paleogene Paleoceanographic Changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 83(1): 49-64. 2/3

[24]

Hallock P, Schlager W. Nutrient Excess and the Demise of Coral Reefs and Carbonate Platforms. Palaios, 1986, 1(4): 389-398.

[25]

Haq B U. Biogeographic History of Miocene Calcareous Nannoplankton and Paleoceanography of the Atlantic Ocean. Micropaleontology, 1980, 26 4 414

[26]

Haq B U, Lohmann G P. Early Cenozoic Calcareous Nannoplankton Biogeography of the Atlantic Ocean. Marine Micropaleontology, 1976, 1: 119-194.

[27]

Hardas P, Mutterlose J. Calcareous Nannofossil Assemblages of Oceanic Anoxic Event 2 in the Equatorial Atlantic: Evidence of a Eutrophication Event. Marine Micropaleontology, 2007, 66(1): 52-69.

[28]

Hunt J. Petroleum Geochemistry and Geology, 1996, 2nd Edition, New York: Freeman and Company, 743.

[29]

Jackson K S, Hawkins P J, Bennett A J R. Regional Facies and Geochemical Evaluation of the Southern Denison Trough, Queensland. The APPEA Journal, 1980, 20 1 143

[30]

James G A, Wynd J G. Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bulletin, 1965, 49: 2182-2245.

[31]

Jiang S J, Wise S W Jr.. Distinguishing the Influence of Diagenesis on the Paleoecological Reconstruction of Nannoplankton across the Paleocene/Eocene Thermal Maximum: An Example from the Kerguelen Plateau, Southern Indian Ocean. Marine Micropaleontology, 2009, 72(1): 49-59. 2

[32]

Kamali M R, Fathi Mobarakabad A, Mohsenian E. Petroleum Geochemistry and Thermal Modeling of Pabdeh Formation in Dezful Embayment. Journal of Science (University of Tehran), 2006, 32(2): 1-11.

[33]

Kennett J P, Stott L D. Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. Nature, 1991, 353(6341): 225-229.

[34]

Kessels K, Mutterlose J, Ruffell A. Calcareous Nannofossils from Late Jurassic Sediments of the Volga Basin (Russian Platform): Evidence for Productivity-Controlled Black Shale Deposition. International Journal of Earth Sciences, 2003, 92(5): 743-757.

[35]

Khavari Khorassani M P, Hadavi F, Ghasemi-Nejad E, . Bio-stratigraphy and Paleoecological Study of Pabdeh Formation in Interior Fars, Zagros Basin, Iran. Open Journal of Geology, 2014, 4(11): 571-581.

[36]

Konyuhov A I, Maleki B. The Persian Gulf Basin: Geological History, Sedimentary Formations, and Petroleum Potential. Lithology and Mineral Resources, 2006, 41(4): 344-361.

[37]

Linnert C, Mutterlose J. Evidence of Increasing Surface Water Oligotrophy during the Campanian-Maastrichtian Boundary Interval: Calcareous Nannofossils from DSDP Hole 390A (Blake Nose). Marine Micropaleontology, 2009, 73(1): 26-36. 2

[38]

Liu Y M, Ye J R, Cao Q, . Hydrocarbon Generation, Migration, and Accumulation in the Eocene Niubao Formation in the Lunpola Basin, Tibet, China: Insights from Basin Modeling and Fluid Inclusion Analysis. Journal of Earth Science, 2020, 31(1): 195-206.

[39]

Lohmann G P, Carlson J J. Oceanographic Significance of Pacific Late Miocene Calcareous Nannoplankton. Marine Micropaleontology, 1981, 6(5): 553-579. 6

[40]

Marino M, Maiorano P, Lirer F. Changes in Calcareous Nannofossil Assemblages during the Mid-Pleistocene Revolution. Marine Micropaleontology, 2008, 69(1): 70-90.

[41]

Martini, E., 1971. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. Procedings II Planktonic Conference, Roma. 739–386

[42]

Mutterlose J, Bornemann A, Herrle J O. Mesozoic Calcareous Nannofossils—State of the Art. Paläontologische Zeitschrift, 2005, 79(1): 113-133.

[43]

Mutterlose J, Linnert C, Norris R. Calcareous Nannofossils from the Paleocene-Eocene Thermal Maximum of the Equatorial Atlantic (ODP Site 1260B): Evidence for Tropical Warming. Marine Micropaleontology, 2007, 65(1): 13-31. 2

[44]

Mutti M, Hallock P. Carbonate Systems along Nutrient and Temperature Gradients: Some Sedimentological and Geochemical Constraints. International Journal of Earth Sciences, 2003, 92(4): 465-475.

[45]

Ovechkina M N, Alekseev A S. Quantitative Changes of Calcareous Nannoflora in the Saratov Region (Russian Platform) during the Late Maastrichtian Warming Event. Journal of Iberian Geology, 2005, 31: 149-165.

[46]

Parandavar, M., Hadavi, F., 2017. Calcareous Nannofossils Biostratigraphy of the Qom Formation in Central Iran. 16th International Nannoplankton Association (INA) Conference, Athens. 79

[47]

Parandavar M, Hadavi F. Identification of the Oligocene-Miocene Boundary in the Central Iran Basin (Qom Formation): Calcareous Nannofossil Evidences. Geological Quarterly, 2019, 63(2): 215-229.

[48]

Passey Q R, Creany S, Kulla J B, . A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 1990, 74: 1777-1794.

[49]

Perch-Nielsen K. Bolli H M, Sunders J B, Perch-Nielsen K. Mesozoic and Cenozoic Calcareous Nannofossils. Plankton Stratigraphy Book, 1985, Cambridge: Cambridge Earth Science Series, 329-554.

[50]

Roth P H, Krumbach K R. Middle Cretaceous Calcareous Nannofossil Biogeography and Preservation in the Atlantic and Indian Oceans: Implications for Paleoceanography. Marine Micropaleontology, 1986, 10(1): 235-266. 2/3

[51]

Sadouni J, Rabbani A. Characteristics of the First Occurrence of Jurassic Petroleum in the Zagros Basin, Iran. Acta Geologica Sinica, 2018, 92(6): 2280-2296.

[52]

Sissingh W, Prins B. Biostratigraphy of Cretaceous Calcareous Nannoplankton. Geologie En Mijnbouw, 1977, 56(1): 37-65.

[53]

Soleimani B, Bahadori A, Meng F W. Microbiostratigraphy, Microfacies and Sequence Stratigraphy of Upper Cretaceous and Paleogene Sediments, Hendijan Oilfield, Northwest of Persian Gulf, Iran. Natural Science, 2013, 5(11): 1165-1182.

[54]

Stocklin J. Burk C A, Drake C L. Possible Ancient Continental Margins in Iran. The Geology of Continental Margins, 1974, New York: Springer, 873-887

[55]

Stocklin J. Structural History and Tectonics of Iran: A Review. AAPG Bulletin, 1981, 52(7): 1229-1258.

[56]

Takin M. Iranian Geology and Continental Drift in the Middle East. Nature, 1972, 235(5334): 147-150.

[57]

Thibault N, Gardin S. Maastrichtian Calcareous Nannofossil Bio-stratigraphy and Paleoecology in the Equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A). Revue de Micropaléontologie, 2006, 49(4): 199-214.

[58]

Tremolada F, Bralower T J. Nannofossil Assemblage Fluctuations during the Paleocene-Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): Palaeoceanographic Implications. Marine Micropaleontology, 2004, 52(1): 107-116. 2/3/4

[59]

Varol O. Calcareous Nannofossils Study of the Central and Western Solomon Islands. Geology and Offshore Resources of Pacific Island Arcs, 1989, 12(1): 239-268.

[60]

Wade B S, Bown P R. Calcareous Nannofossils in Extreme Environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233(3): 271-286. 4

[61]

Watkins D K. Nannoplankton Productivity Fluctuations and Rhythmically-Bedded Pelagic Carbonates of the Greenhorn Limestone (Upper Cretaceous). Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 74(1): 75-86. 2

[62]

Wei W C, Wise S W Jr.. Biogeographic Gradients of Middle Eocene-Oligocene Calcareous Nannoplankton in the South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 79(1): 29-61. 2

[63]

Williams J R, Bralower T J. Nannofossil Assemblages, Fine Fraction Stable Isotopes, and the Paleoceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. Paleoceanography, 1995, 10(4): 815-839.

[64]

Wu Z R, He S, Han Y J, . Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 2020, 31(2): 368-384.

[65]

Young J R. Winter A, Siesser W G. Functions of Coccoliths. Coccolithophores, 1994, Cambridge: Cambridge University Press, 63-82.

[66]

Young J R. Bown P R. Neogene Calcareous Nannofossils Biostratigraphy. Calcareous Nannofossils Biostratigraphy, 1998, Kluwer: Kluwer Academic Publishers, 225-265

[67]

Young, J. R., Bown, P. R., Lees, J. A., 2019. Authoritative Guide to the Biodiversity of Coccolithophores. http://www.mikrotax.org

[68]

Young J R, Henriksen K, Probert I. Thierstein H R, Young J R. Structure and Morphogenesis of the Coccoliths of the CODENET Species. Coccolithophores—From Molecular Processes to Global Impact, 2004, Berlin: Springer-Verlag, 191-216.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/