Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran

Mohammad Parandavar, Jalil Sadouni

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (4) : 1022-1034.

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (4) : 1022-1034. DOI: 10.1007/s12583-020-1091-6
Article

Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran

Author information +
History +

Abstract

Hydrocarbon source potential of the Paleogene Pabdeh Formation was studied by means of organic geochemistry and distribution of calcareous nannofossils. Based on the results, an Eocene-aged organic matter (OM)-rich interval was identified and traced across different parts of the North Dezful zone and partly Abadan Plain. In order to characterize the OM quality and richness of the studied intervals, Rock-Eval pyrolysis and nannofossils evaluation were performed, and the geochemical data collected along selected wells were correlated to capture the variations of thickness and source potential of the OM-rich interval. Accordingly, remarkable variations were identified within the depth ranges of 2 480–2 552 m and also 2 200–2 210 m, which were attributed to the maximum increase in the rate of growth R-selected species. This increase in the productivity rate was found to be well correlated to high Rock-Eval total organic carbon (TOC) and hydrogen index (HI) values. Given that the maturity of Pabdeh Formation in the studied area was found to have reached the oil window, we expect significant hydrocarbon generation (Type II kerogen), making the play economically highly promising.

Keywords

calcareous nannofossils / Rock-Eval / organic geochemistry / Paleogene / paleo-productivity / diversity / Dezful

Cite this article

Download citation ▾
Mohammad Parandavar, Jalil Sadouni. Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran. Journal of Earth Science, 2021, 32(4): 1022‒1034 https://doi.org/10.1007/s12583-020-1091-6

References

Aghanabati A. Geology of Iran, 2004, Tehran: Geological Survey of Iran, 586.
Alizadeh B, Sarafdokht H, Rajabi M, . Organic Geochemistry and Petrography of Kazhdumi (Albian-Cenomanian) and Pabdeh (Paleogene) Potential Source Rocks in Southern Part of the Dezful Embayment, Iran. Organic Geochemistry, 2012, 49: 36-46.
CrossRef Google scholar
Andruleit H. Status of the Java Upwelling Area (Indian Ocean) during the Oligotrophic Northern Hemisphere Winter Monsoon Season as Revealed by Coccolithophores. Marine Micropaleontology, 2007, 64(1): 36-51. 2
CrossRef Google scholar
Aubry M P. Handbook of Cenozoic Calcareous Nannoplankton. Book 3: Ortholithae (Pentaliths, and Others), Heliotithae (Fasciculiths, Sphenoliths and Others), 1989, New York: Micropaleontology Press, American Museum of Natural History, 279.
Behar F, Beaumont V, Penteado D B. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 2001, 56(2): 111-134.
CrossRef Google scholar
Berberian M, King G C P. Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 1981, 18(2): 210-265.
CrossRef Google scholar
Beydoun Z R, Sikander A H. The Red Sea—Gulf of Aden: Re-Assessment of Hydrocarbon Potential. Marine and Petroleum Geology, 1992, 9(5): 474-485.
CrossRef Google scholar
Boersma A, Premoli Silva I, Hallock P. Aubry M P, Lucas S, Berggren W A. Trophic Models for the Well-Mixed and Poorly Mixed Warm Oceans across the Paleocene-Eocene Epoch Boundary. Late Paleocene-Early Eocene Climatic and Biotic Evolution, 1998, New York: Columbia University Press, 204-213.
Bordenave M L, Burwood R. Source Rock Distribution and Maturation in the Zagros Orogenic Belt: Provenance of the Asmari and Bangestan Reservoir Oil Accumulations. Organic Geochemistry, 1990, 16(1): 369-387. 2/3
CrossRef Google scholar
Bordenave M L, Hegre J A. Current Distribution of Oil and Gas Fields in the Zagros Fold Belt of Iran and Contiguous Offshore as the Result of the Petroleum Systems. Geological Society, London, Special Publications, 2010, 330(1): 291-353.
CrossRef Google scholar
Bordenave M L, Huc A Y. The Cretaceous Source Rocks in the Zagros Foothills of Iran. Revue De l’Institut Français Du Pétrole, 1995, 50(6): 727-752.
CrossRef Google scholar
Bown P R, Young J R. Bown P R. Techniques. Calcareous Nannofossils Biostratigraphy, 1998, London: Chapman and Hall
CrossRef Google scholar
Bralower T J. Evidence of Surface Water Oligotrophy during the Paleocene-Eocene Thermal Maximum: Nannofossil Assemblage Data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography, 2002, 17 2 1023
CrossRef Google scholar
Bukry D. Biostratigraphy of Cenozoic Marine Sediment by Calcareous Nannofossils. Micropaleontology, 1978, 24(1): 44-60.
CrossRef Google scholar
Catuneanu O. Principles of Sequence Stratigraphy, 2006, 1st Edition, Amsterdam: Elsevier, 375.
Elhaï H. Lexique Stratigraphique International. Annales De Géographie, 1963, 72 394 720
CrossRef Google scholar
Erba E. Middle Cretaceous Calcareous Nannofossils from the Western Pacific (ODP Leg 129): Evidence for Paleoequatorial Crossings. Proceedings of the Ocean Drilling Program. Scientific Results, 1992, 129: 189-201.
Erba E, de Castradori D, Guasti G, . Calcareous Nannofossils and Milankovitch Cycles: The Example of the Albian Gault Clay Formation (Southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93(1): 47-69. 2
CrossRef Google scholar
Espitalie, J., Madec, M., Tissot, B., et al., 1977. Source Rock Characterization Method for Petroleum Exploration. Offshore Technology Conference, Houston, Texas. https://doi.org/10.4043/2935-ms
Gartner S. Paleoceanography of the Mid-Pleistocene. Marine Micropaleontology, 1988, 13(1): 23-46.
CrossRef Google scholar
Giunta S, Negri A, Morigi C, . Coccolithophorid Ecostratigraphy and Multi-Proxy Paleoceanographic Reconstruction in the Southern Adriatic Sea during the Last Deglacial Time (Core AD91-17). Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 190: 39-59.
CrossRef Google scholar
Hallock P. Stanley G D. Coral Reefs, Carbonate Sedimentation, Nutrients, and Global Change. The History and Sedimentology of Ancient Reef Ecosystems, 2001, New York: Kluwer Academic/Plenum Publishers, 387-427
CrossRef Google scholar
Hallock P, Premoli Silva I, Boersma A. Similarities between Planktonic and Larger Foraminiferal Evolutionary Trends through Paleogene Paleoceanographic Changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 83(1): 49-64. 2/3
CrossRef Google scholar
Hallock P, Schlager W. Nutrient Excess and the Demise of Coral Reefs and Carbonate Platforms. Palaios, 1986, 1(4): 389-398.
CrossRef Google scholar
Haq B U. Biogeographic History of Miocene Calcareous Nannoplankton and Paleoceanography of the Atlantic Ocean. Micropaleontology, 1980, 26 4 414
CrossRef Google scholar
Haq B U, Lohmann G P. Early Cenozoic Calcareous Nannoplankton Biogeography of the Atlantic Ocean. Marine Micropaleontology, 1976, 1: 119-194.
CrossRef Google scholar
Hardas P, Mutterlose J. Calcareous Nannofossil Assemblages of Oceanic Anoxic Event 2 in the Equatorial Atlantic: Evidence of a Eutrophication Event. Marine Micropaleontology, 2007, 66(1): 52-69.
CrossRef Google scholar
Hunt J. Petroleum Geochemistry and Geology, 1996, 2nd Edition, New York: Freeman and Company, 743.
Jackson K S, Hawkins P J, Bennett A J R. Regional Facies and Geochemical Evaluation of the Southern Denison Trough, Queensland. The APPEA Journal, 1980, 20 1 143
CrossRef Google scholar
James G A, Wynd J G. Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bulletin, 1965, 49: 2182-2245.
Jiang S J, Wise S W Jr.. Distinguishing the Influence of Diagenesis on the Paleoecological Reconstruction of Nannoplankton across the Paleocene/Eocene Thermal Maximum: An Example from the Kerguelen Plateau, Southern Indian Ocean. Marine Micropaleontology, 2009, 72(1): 49-59. 2
CrossRef Google scholar
Kamali M R, Fathi Mobarakabad A, Mohsenian E. Petroleum Geochemistry and Thermal Modeling of Pabdeh Formation in Dezful Embayment. Journal of Science (University of Tehran), 2006, 32(2): 1-11.
Kennett J P, Stott L D. Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. Nature, 1991, 353(6341): 225-229.
CrossRef Google scholar
Kessels K, Mutterlose J, Ruffell A. Calcareous Nannofossils from Late Jurassic Sediments of the Volga Basin (Russian Platform): Evidence for Productivity-Controlled Black Shale Deposition. International Journal of Earth Sciences, 2003, 92(5): 743-757.
CrossRef Google scholar
Khavari Khorassani M P, Hadavi F, Ghasemi-Nejad E, . Bio-stratigraphy and Paleoecological Study of Pabdeh Formation in Interior Fars, Zagros Basin, Iran. Open Journal of Geology, 2014, 4(11): 571-581.
CrossRef Google scholar
Konyuhov A I, Maleki B. The Persian Gulf Basin: Geological History, Sedimentary Formations, and Petroleum Potential. Lithology and Mineral Resources, 2006, 41(4): 344-361.
CrossRef Google scholar
Linnert C, Mutterlose J. Evidence of Increasing Surface Water Oligotrophy during the Campanian-Maastrichtian Boundary Interval: Calcareous Nannofossils from DSDP Hole 390A (Blake Nose). Marine Micropaleontology, 2009, 73(1): 26-36. 2
CrossRef Google scholar
Liu Y M, Ye J R, Cao Q, . Hydrocarbon Generation, Migration, and Accumulation in the Eocene Niubao Formation in the Lunpola Basin, Tibet, China: Insights from Basin Modeling and Fluid Inclusion Analysis. Journal of Earth Science, 2020, 31(1): 195-206.
CrossRef Google scholar
Lohmann G P, Carlson J J. Oceanographic Significance of Pacific Late Miocene Calcareous Nannoplankton. Marine Micropaleontology, 1981, 6(5): 553-579. 6
CrossRef Google scholar
Marino M, Maiorano P, Lirer F. Changes in Calcareous Nannofossil Assemblages during the Mid-Pleistocene Revolution. Marine Micropaleontology, 2008, 69(1): 70-90.
CrossRef Google scholar
Martini, E., 1971. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. Procedings II Planktonic Conference, Roma. 739–386
Mutterlose J, Bornemann A, Herrle J O. Mesozoic Calcareous Nannofossils—State of the Art. Paläontologische Zeitschrift, 2005, 79(1): 113-133.
CrossRef Google scholar
Mutterlose J, Linnert C, Norris R. Calcareous Nannofossils from the Paleocene-Eocene Thermal Maximum of the Equatorial Atlantic (ODP Site 1260B): Evidence for Tropical Warming. Marine Micropaleontology, 2007, 65(1): 13-31. 2
CrossRef Google scholar
Mutti M, Hallock P. Carbonate Systems along Nutrient and Temperature Gradients: Some Sedimentological and Geochemical Constraints. International Journal of Earth Sciences, 2003, 92(4): 465-475.
CrossRef Google scholar
Ovechkina M N, Alekseev A S. Quantitative Changes of Calcareous Nannoflora in the Saratov Region (Russian Platform) during the Late Maastrichtian Warming Event. Journal of Iberian Geology, 2005, 31: 149-165.
Parandavar, M., Hadavi, F., 2017. Calcareous Nannofossils Biostratigraphy of the Qom Formation in Central Iran. 16th International Nannoplankton Association (INA) Conference, Athens. 79
Parandavar M, Hadavi F. Identification of the Oligocene-Miocene Boundary in the Central Iran Basin (Qom Formation): Calcareous Nannofossil Evidences. Geological Quarterly, 2019, 63(2): 215-229.
Passey Q R, Creany S, Kulla J B, . A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 1990, 74: 1777-1794.
Perch-Nielsen K. Bolli H M, Sunders J B, Perch-Nielsen K. Mesozoic and Cenozoic Calcareous Nannofossils. Plankton Stratigraphy Book, 1985, Cambridge: Cambridge Earth Science Series, 329-554.
Roth P H, Krumbach K R. Middle Cretaceous Calcareous Nannofossil Biogeography and Preservation in the Atlantic and Indian Oceans: Implications for Paleoceanography. Marine Micropaleontology, 1986, 10(1): 235-266. 2/3
CrossRef Google scholar
Sadouni J, Rabbani A. Characteristics of the First Occurrence of Jurassic Petroleum in the Zagros Basin, Iran. Acta Geologica Sinica, 2018, 92(6): 2280-2296.
Sissingh W, Prins B. Biostratigraphy of Cretaceous Calcareous Nannoplankton. Geologie En Mijnbouw, 1977, 56(1): 37-65.
Soleimani B, Bahadori A, Meng F W. Microbiostratigraphy, Microfacies and Sequence Stratigraphy of Upper Cretaceous and Paleogene Sediments, Hendijan Oilfield, Northwest of Persian Gulf, Iran. Natural Science, 2013, 5(11): 1165-1182.
CrossRef Google scholar
Stocklin J. Burk C A, Drake C L. Possible Ancient Continental Margins in Iran. The Geology of Continental Margins, 1974, New York: Springer, 873-887
CrossRef Google scholar
Stocklin J. Structural History and Tectonics of Iran: A Review. AAPG Bulletin, 1981, 52(7): 1229-1258.
Takin M. Iranian Geology and Continental Drift in the Middle East. Nature, 1972, 235(5334): 147-150.
CrossRef Google scholar
Thibault N, Gardin S. Maastrichtian Calcareous Nannofossil Bio-stratigraphy and Paleoecology in the Equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A). Revue de Micropaléontologie, 2006, 49(4): 199-214.
CrossRef Google scholar
Tremolada F, Bralower T J. Nannofossil Assemblage Fluctuations during the Paleocene-Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): Palaeoceanographic Implications. Marine Micropaleontology, 2004, 52(1): 107-116. 2/3/4
CrossRef Google scholar
Varol O. Calcareous Nannofossils Study of the Central and Western Solomon Islands. Geology and Offshore Resources of Pacific Island Arcs, 1989, 12(1): 239-268.
Wade B S, Bown P R. Calcareous Nannofossils in Extreme Environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233(3): 271-286. 4
CrossRef Google scholar
Watkins D K. Nannoplankton Productivity Fluctuations and Rhythmically-Bedded Pelagic Carbonates of the Greenhorn Limestone (Upper Cretaceous). Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 74(1): 75-86. 2
CrossRef Google scholar
Wei W C, Wise S W Jr.. Biogeographic Gradients of Middle Eocene-Oligocene Calcareous Nannoplankton in the South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 79(1): 29-61. 2
CrossRef Google scholar
Williams J R, Bralower T J. Nannofossil Assemblages, Fine Fraction Stable Isotopes, and the Paleoceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. Paleoceanography, 1995, 10(4): 815-839.
CrossRef Google scholar
Wu Z R, He S, Han Y J, . Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 2020, 31(2): 368-384.
CrossRef Google scholar
Young J R. Winter A, Siesser W G. Functions of Coccoliths. Coccolithophores, 1994, Cambridge: Cambridge University Press, 63-82.
Young J R. Bown P R. Neogene Calcareous Nannofossils Biostratigraphy. Calcareous Nannofossils Biostratigraphy, 1998, Kluwer: Kluwer Academic Publishers, 225-265
CrossRef Google scholar
Young, J. R., Bown, P. R., Lees, J. A., 2019. Authoritative Guide to the Biodiversity of Coccolithophores. http://www.mikrotax.org
Young J R, Henriksen K, Probert I. Thierstein H R, Young J R. Structure and Morphogenesis of the Coccoliths of the CODENET Species. Coccolithophores—From Molecular Processes to Global Impact, 2004, Berlin: Springer-Verlag, 191-216.

Accesses

Citations

Detail

Sections
Recommended

/