Nitrogen Isotopes from the Neoproterozoic Liulaobei Formation, North China: Implications for Nitrogen Cycling and Eukaryotic Evolution

Ting Yang, Xinqiang Wang, Dongtao Xu, Xiaoying Shi, Yongbo Peng

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (5) : 1309-1319.

Journal of Earth Science ›› 2022, Vol. 33 ›› Issue (5) : 1309-1319. DOI: 10.1007/s12583-020-1085-4
Paleo-environment and Hydrogeology

Nitrogen Isotopes from the Neoproterozoic Liulaobei Formation, North China: Implications for Nitrogen Cycling and Eukaryotic Evolution

Author information +
History +

Abstract

The nitrogen isotope compositions (δ15N) of sedimentary rocks can provide information about the nutrient N cycling and redox conditions that may have played important roles in biological evolution in Earth’s history. Although considerable δ15N data for the Precambrian have been published, there is a large gap during the Early Neoproterozoic that restrains our understanding of the linkages among N cycling, ocean redox changes and biological evolution during this key period. Here, we report bulk δ15N and organic carbon isotope (δ,13Corg) compositions as well as the total nitrogen (TN) and total organic carbon (TOC) contents from the Tonian fossiliferous Liulaobei Formation in the southern part of the North China Platform. The δ15N in the study section is dominated by very stable values centering around +4.3‰, which is moderately lower than that in modern sediments (∼+6‰). These positive δ15N values were attributed to partial denitrification under low primary productivity (scenario 1) and/or denitrification coupled with dissimilatory nitrate reduction to ammonium (DNRA) (scenario 2). In either case, the availability of fixed nitrogen may have provided the nutrient N required to facilitate facilitated eukaryotic growth. Our study highlights the pivotal role of nutrient N in the evolution of eukaryotes.

Keywords

Neoproterozoic / Tonian / Liulaobei Formation / nitrogen isotopes / eukaryotic evolution / nutrient limitation / geochemistry

Cite this article

Download citation ▾
Ting Yang, Xinqiang Wang, Dongtao Xu, Xiaoying Shi, Yongbo Peng. Nitrogen Isotopes from the Neoproterozoic Liulaobei Formation, North China: Implications for Nitrogen Cycling and Eukaryotic Evolution. Journal of Earth Science, 2022, 33(5): 1309‒1319 https://doi.org/10.1007/s12583-020-1085-4

References

Ader M, Macouin M, Trindade R I F, . A Multilayered Water Column in the Ediacaran Yangtze Platform? Insights from Carbonate and Organic Matter Paired δ13C. Earth and Planetary Science Letters, 2009, 288(1/2): 213-227.
CrossRef Google scholar
Ader M, Sansjofre P, Halverson G P, . Ocean Redox Structure across the Late Neoproterozoic Oxygenation Event: A Nitrogen Isotope Perspective. Earth and Planetary Science Letters, 2014, 396: 1-13.
CrossRef Google scholar
Ader M, Thomazo C, Sansjofre P, . Interpretation of the Nitrogen Isotopic Composition of Precambrian Sedimentary Rocks: Assumptions and Perspectives. Chemical Geology, 2016, 429: 93-110.
CrossRef Google scholar
Algeo T J, Meyers P A, Robinson R S, . Icehouse-Greenhouse Variations in Marine Denitrification. Biogeosciences, 2014, 11(4): 1273-1295.
CrossRef Google scholar
Altabet M A, Pilskaln C, Thunell R, . The Nitrogen Isotope Biogeochemistry of Sinking Particles from the Margin of the Eastern North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(4): 655-679.
CrossRef Google scholar
Altabet M A. Volkman J K. Isotopic Tracers of the Marine Nitrogen Cycle: Present and Past. Marine Organic Matter: Biomarkers, Isotopes and DNA, 2006, Berlin Heidelberg: Springer
Bristow L A, Dalsgaard T, Tiano L, . Ammonium and Nitrite Oxidation at Nanomolar Oxygen Concentrations in Oxygen Minimum Zone Waters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10601-10606.
CrossRef Google scholar
Canfield D E, Zhang S, Frank A B, . Highly Fractionated Chromium Isotopes in Mesoproterozoic-Aged Shales and Atmospheric Oxygen. Nature Communications, 2018, 9 2871
CrossRef Google scholar
Chang C, Hu W X, Wang X L, . Nitrogen Isotope Evidence for an Oligotrophic Shallow Ocean during the Cambrian Stage 4. Geochimica et Cosmochimica Acta, 2019, 257: 49-67.
CrossRef Google scholar
Chen Y, Diamond C W, Stüeken E E, . Coupled Evolution of Nitrogen Cycling and Redoxcline Dynamics on the Yangtze Block across the Ediacaran — Cambrian Transition. Geochimica et Cosmochimica Acta, 2019, 257: 243-265.
CrossRef Google scholar
Cole D B, Reinhard C T, Wang X L, . A Shale-Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 2016, 44(7): 555-558.
CrossRef Google scholar
Crockford P W, Kunzmann M, Bekker A, . Claypool Continued: Extending the Isotopic Record of Sedimentary Sulfate. Chemical Geology, 2019, 513: 200-225.
CrossRef Google scholar
Diamond C W, Planavsky N J, Wang C, . What the ∼1.4 Ga Xiamaling Formation can and Cannot Tell Us about the Mid-Proterozoic Ocean. Geobiology, 2018, 16(3): 219-236.
CrossRef Google scholar
Dong L, Xiao S H, Shen B, . Restudy of the Worm-Like Carbonaceous Compression Fossils Protoarenicola, Pararenicola, and Sinosabellidites from Early Neoproterozoic Successions in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 258(3): 138-161.
CrossRef Google scholar
Freudenthal T, Wagner T, Wenzhöfer F, . Early Diagenesis of Organic Matter from Sediments of the Eastern Subtropical Atlantic: Evidence from Stable Nitrogen and Carbon Isotopes. Geochimica et Cosmochimica Acta, 2001, 65(11): 1795-1808.
CrossRef Google scholar
Fuchsman C A, Murray J W, Konovalov S K. Concentration and Natural Stable Isotope Profiles of Nitrogen Species in the Black Sea. Marine Chemistry, 2008, 111(1/2): 90-105.
CrossRef Google scholar
Giblin A, Tobias C, Song B, . The Importance of Dissimilatory Nitrate Reduction to Ammonium (DNRA) in the Nitrogen Cycle of Coastal Ecosystems. Oceanography, 2013, 26(3): 124-131.
CrossRef Google scholar
Godfrey L V, Poulton S W, Bebout G E, . Stability of the Nitrogen Cycle during Development of Sulfidic Water in the Redox-Stratified Late Paleoproterozoic Ocean. Geology, 2013, 41(6): 655-658.
CrossRef Google scholar
Guilbaud R, Poulton S W, Thompson J, . Phosphorus-Limited Conditions in the Early Neoproterozoic Ocean Maintained Low Levels of Atmospheric Oxygen. Nature Geoscience, 2020, 13: 296-301.
CrossRef Google scholar
Guilbaud R, Poulton S W, Butterfield N J, . A Global Transition to Ferruginous Conditions in the Early Neoproterozoic Oceans. Nature Geoscience, 2015, 8: 466-470.
CrossRef Google scholar
Hayes J M, Strauss H, Kaufman A J. The Abundance of 13C in Marine Organic Matter and Isotopic Fractionation in the Global Biogeochemical Cycle of Carbon during the Past 800 Ma. Chemical Geology, 1999, 161(1/2/3): 103-125.
CrossRef Google scholar
Higgins M B, Robinson R S, Husson J M, . Dominant Eukaryotic Export Production during Ocean Anoxic Events Reflects the Importance of Recycled NH4. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2269-2274.
CrossRef Google scholar
Hong T, Jia Z, Yin L, . Acritarchs from the Neoproterozoic Jiuliqiao Formation, Huainan Region, and Their Biostratigraphic Significance. Acta Palaeontologica Sinica, 2004, 43: 377-387.
Jiang G Q, Wang X Q, Shi X Y, . The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542–520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 2012, 317/318: 96-110.
CrossRef Google scholar
Kipp M A, Stüeken E E, Yun M, . Pervasive Aerobic Nitrogen Cycling in the Surface Ocean across the Paleoproterozoic Era. Earth and Planetary Science Letters, 2018, 500: 117-126.
CrossRef Google scholar
Knoll A H, Nowak M A. The Timetable of Evolution. Science Advances, 2017, 3 5 e1603076
CrossRef Google scholar
Koehler M C, Stüeken E E, Kipp M A, . Spatial and Temporal Trends in Precambrian Nitrogen Cycling: A Mesoproterozoic Offshore Nitrate Minimum. Geochimica et Cosmochimica Acta, 2017, 198: 315-337.
CrossRef Google scholar
Lam P, Kuypers M M M. Microbial Nitrogen Cycling Processes in Oxygen Minimum Zones. Annual Review of Marine Science, 2011, 3: 317-345.
CrossRef Google scholar
Lan Z W, Zhang S J, Tucker M, . Evidence for Microbes in Early Neoproterozoic Stromatolites. Sedimentary Geology, 2020, 398 105589
CrossRef Google scholar
Lehmann M F, Bernasconi S M, Barbieri A, . Preservation of Organic Matter and Alteration of Its Carbon and Nitrogen Isotope Composition during Simulated and in situ Early Sedimentary Diagenesis. Geochimica et Cosmochimica Acta, 2002, 66(20): 3573-3584.
CrossRef Google scholar
Li G J, Chen L, Pang K, . An Assemblage of Macroscopic and Diversified Carbonaceous Compression Fossils from the Tonian Shiwangzhuang Formation in Western Shandong, North China. Precambrian Research, 2020, 346 105801
CrossRef Google scholar
Lu W, Wörndle S, Halverson G P, . Iodine Proxy Evidence for Increased Ocean Oxygenation during the Bitter Springs Anomaly. Geochemical Perspectives Letters, 2017, 5: 53-57.
CrossRef Google scholar
Luo G M, Junium C K, Kump L R, . Shallow Stratification Prevailed for ∼ 1 700 to ∼ 1 300 Ma Ocean: Evidence from Organic Carbon Isotopes in the North China Craton. Earth and Planetary Science Letters, 2014, 400: 219-232.
CrossRef Google scholar
Luo G M, Wang Y B, Algeo T J, . Enhanced Nitrogen Fixation in the Immediate Aftermath of the Latest Permian Marine Mass Extinction. Geology, 2011, 39(7): 647-650.
CrossRef Google scholar
Luo G M, Junium C K, Izon G, . Nitrogen Fixation Sustained Productivity in the Wake of the Palaeoproterozoic Great Oxygenation Event. Nature Communications, 2018, 9 978
CrossRef Google scholar
Lyons T W, Reinhard C T, Planavsky N J. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 2014, 506: 307-315.
CrossRef Google scholar
MacDonald F A, Schmitz M D, Crowley J L, . Calibrating the Cryogenian. Science, 2010, 327(5970): 1241-1243.
CrossRef Google scholar
McCready R G L, Gould W D, Barendregt R W. Nitrogen Isotope Fractionation during the Reduction of NO3 to NH4 by Desulfovibrio Sp. Canadian Journal of Microbiology, 1983, 29(2): 231-234.
CrossRef Google scholar
Michiels C C, Darchambeau F, Roland F A E, . Iron-Dependent Nitrogen Cycling in a Ferruginous Lake and the Nutrient Status of Proterozoic Oceans. Nature Geoscience, 2017, 10 217
CrossRef Google scholar
Morales L V, Granger J, Chang B X, . Elevated 15N/14N in Particulate Organic Matter, Zooplankton, and Diatom Frustule-Bound Nitrogen in the Ice-Covered Water Column of the Bering Sea Eastern Shelf. Deep Sea Research Part II: Topical Studies in Oceanography, 2014, 109: 100-111.
CrossRef Google scholar
Ossa O F, Hofmann A, Spangenberg J E, . Limited Oxygen Production in the Mesoarchean Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6647-6652.
CrossRef Google scholar
Pang K, Tang Q, Chen L, . Nitrogen-Fixing Heterocystous Cyanobacteria in the Tonian Period. Current Biology, 2018, 28(4): 616-622.e1.
CrossRef Google scholar
Papineau D, Purohit R, Goldberg T, . High Primary Productivity and Nitrogen Cycling after the Paleoproterozoic Phosphogenic Event in the Aravalli Supergroup, India. Precambrian Research, 2009, 171(1/2/3/4): 37-56.
CrossRef Google scholar
Planavsky N J. The Elements of Marine Life. Nature Geoscience, 2014, 7: 855-856.
CrossRef Google scholar
Planavsky N J, Cole D B, Reinhard C T, . No Evidence for High Atmospheric Oxygen Levels 1 400 Million Years Ago. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(19): E2550-E2551.
Planavsky N J, Reinhard C T, Wang X, . Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 2014, 346(6209): 635-638.
CrossRef Google scholar
Planavsky N J, McGoldrick P, Scott C T, . Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean. Nature, 2011, 477: 448-451.
CrossRef Google scholar
Poulton S W, Canfield D E. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History. Elements, 2011, 7(2): 107-112.
CrossRef Google scholar
Prokopenko M G, Hammond D E, Berelson W M, . Nitrogen Cycling in the Sediments of Santa Barbara Basin and Eastern Subtropical North Pacific: Nitrogen Isotopes, Diagenesis and Possible Chemosymbiosis between Two Lithotrophs (Thioploca and Anammox) — “Riding on a Glider”. Earth and Planetary Science Letters, 2006, 242(1/2): 186-204.
CrossRef Google scholar
Reinhard C T, Planavsky N J, Gill B C, . Evolution of the Global Phosphorus Cycle. Nature, 2017, 541: 386-389.
CrossRef Google scholar
Reinhard C T, Planavsky N J, Robbins L J, . Proterozoic Ocean Redox and Biogeochemical Stasis. PNAS, 2013, 110(14): 5357-5362.
CrossRef Google scholar
Riedman L A, Sadler P M. Global Species Richness Record and Biostratigraphic Potential of Early to Middle Neoproterozoic Eukaryote Fossils. Precambrian Research, 2018, 319: 6-18.
CrossRef Google scholar
Robinson R S, Kienast M, Luiza Albuquerque A, . A Review of Nitrogen Isotopic Alteration in Marine Sediments. Paleoceanography, 2012, 27 4 PA4203
CrossRef Google scholar
Rooney A D, MacDonald F A, Strauss J V, . Re-Os Geochronology and Coupled Os−Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1): 51-56.
CrossRef Google scholar
Sahoo S K, Planavsky N J, Kendall B, . Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 2012, 489: 546-549.
CrossRef Google scholar
Scott C, Lyons T W, Bekker A, . Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 2008, 452: 455-456.
CrossRef Google scholar
Shang M H, Tang D J, Shi X Y, . A Pulse of Oxygen Increase in the Early Mesoproterozoic Ocean at ca. 1.57–1.56 Ga. Earth and Planetary Science Letters, 2019, 527 115797
CrossRef Google scholar
Shen B, Xiao S H, Zhou C M, . Carbon and Sulfur Isotope Chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin Stratification in the Aftermath of an Ediacaran Glaciation Postdating the Shuram Event. Precambrian Research, 2010, 177(3/4): 241-252.
CrossRef Google scholar
Sigman D M, Karsh K L, Casciotti K L. Ocean Process Tracers: Nitrogen Isotopes in the Ocean, 2009, Amsterdam: In: Encyclopedia of Ocean Sciences, Elsevier
Stüeken E E. A Test of the Nitrogen-Limitation Hypothesis for Retarded Eukaryote Radiation: Nitrogen Isotopes across a Mesoproterozoic Basinal Profile. Geochimica et Cosmochimica Acta, 2013, 120: 121-139.
CrossRef Google scholar
Stüeken E E, Buick R, Guy B M, . Isotopic Evidence for Biological Nitrogen Fixation by Molybdenum-Nitrogenase from 3.2 Gyr. Nature, 2015, 520: 666-669.
CrossRef Google scholar
Stüeken E E, Buick R, Lyons T W. Revisiting the Depositional Environment of the Neoproterozoic Callanna Group, South Australia. Precambrian Research, 2019, 334 105474
CrossRef Google scholar
Stüeken E E, Kipp M A, Koehler M C, . The Evolution of Earth’s Biogeochemical Nitrogen Cycle. Earth-Science Reviews, 2016, 160: 220-239.
CrossRef Google scholar
Sun W G, Wang G X, Zhou B H. Macroscopic Worm-Like Body Fossils from the Upper Precambrian (900–700 Ma), Huainan District, Anhui, China and Their Stratigraphic and Evolutionary Significance. Precambrian Research, 1986, 31(4): 377-403.
CrossRef Google scholar
Tang Q, Pang K, Xiao S H, . Organic-Walled Microfossils from the Early Neoproterozoic Liulaobei Formation in the Huainan Region of North China and Their Biostratigraphic Significance. Precambrian Research, 2013, 236: 157-181.
CrossRef Google scholar
Tang Q, Pang K, Yuan X L, . Electron Microscopy Reveals Evidence for Simple Multicellularity in the Proterozoic Fossil Chuaria. Geology, 2017, 45(1): 75-78.
CrossRef Google scholar
Tang Q, Pang K, Yuan X, . A One-Billion-Year-Old Multicellular Chlorophyte. Nature Ecology & Evolution, 2020, 4: 543-549.
CrossRef Google scholar
Thomazo C, Ader M, Philippot P. Extreme 15N-Enrichments in 2.72-Gyr-Old Sediments: Evidence for a Turning Point in the Nitrogen Cycle. Geobiology, 2011, 9(2): 107-120.
CrossRef Google scholar
Thomson D, Rainbird R H, Planavsky N, . Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada: A Record of Ocean Composition Prior to the Cryogenian Glaciations. Precambrian Research, 2015, 263: 232-245.
CrossRef Google scholar
Thunell R C, Sigman D M, Muller-Karger F, . Nitrogen Isotope Dynamics of the Cariaco Basin, Venezuela. Global Biogeochemical Cycles, 2004, 18 3 GB3001
CrossRef Google scholar
Turner E C, Bekker A. Thick Sulfate Evaporite Accumulations Marking a Mid-Neoproterozoic Oxygenation Event (Ten Stone Formation, Northwest Territories, Canada). Geological Society of America Bulletin, 2016, 128(1/2): 203-222.
Tyrrell T. The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production. Nature, 1999, 400: 525-531.
CrossRef Google scholar
Wang D, Ling H-F, Struck U, . Coupling of Ocean Redox and Animal Evolution during the Ediacaran-Cambrian Transition. Nature Communications, 2018, 9 2575
CrossRef Google scholar
Wang G, Zhang S, Li S, . Research on the Upper Precambrian of Northern Jiangsu and Anhui Provinces, 1984, Hefei: Anhui Press of Science and Technology
Wang H Y, Zhang Z H, Li C, . Spatiotemporal Redox Heterogeneity and Transient Marine Shelf Oxygenation in the Mesoproterozoic Ocean. Geochimica et Cosmochimica Acta, 2020, 270: 201-217.
CrossRef Google scholar
Wang X Q, Jiang G Q, Shi X Y, . Nitrogen Isotope Constraints on the Early Ediacaran Ocean Redox Structure. Geochimica et Cosmochimica Acta, 2018, 240: 220-35.
CrossRef Google scholar
Wang X Q, Shi X Y, Tang D J, . Nitrogen Isotope Evidence for Redox Variations at the Ediacaran-Cambrian Transition in South China. The Journal of Geology, 2013, 121(5): 489-502.
CrossRef Google scholar
Wang Z P, Wang X Q, Shi X Y, . Coupled Nitrate and Phosphate Availability Facilitated the Expansion of Eukaryotic Life at Circa 1.56 Ga. Journal of Geophysical Research: Biogeosciences, 2020, 125 4 e2019JG005487.
Xiao S H, Bao H M, Wang H F, . The Neoproterozoic Quruqtagh Group in Eastern Chinese Tianshan: Evidence for a Post-Marinoan Glaciation. Precambrian Research, 2004, 130(1/2/3/4): 1-26.
CrossRef Google scholar
Xiao S H, Shen B, Tang Q, . Biostratigraphic and Chemostratigraphic Constraints on the Age of Early Neoproterozoic Carbonate Successions in North China. Precambrian Research, 2014, 246: 208-225.
CrossRef Google scholar
Xiao S H, Tang Q. After the Boring Billion and before the Freezing Millions: Evolutionary Patterns and Innovations in the Tonian Period. Emerging Topics in Life Sciences, 2018, 2(2): 161-171.
CrossRef Google scholar
Xing Y. The Upper Precambrian of China, Volume 3 of “The Stratigraphy of China”, 1989, Beijing: Geological Publishing House
Xu D T, Wang X Q, Shi X Y, . Nitrogen Cycle Perturbations Linked to Metazoan Diversification during the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538 109392
CrossRef Google scholar
Yang D B, Xu W L, Xu Y G, . U−Pb Ages and Hf Isotope Data from Detrital Zircons in the Neoproterozoic Sandstones of Northern Jiangsu and Southern Liaoning Provinces, China: Implications for the Late Precambrian Evolution of the Southeastern North China Craton. Precambrian Research, 2012, 216/217/218/219: 162-176.
CrossRef Google scholar
Yin C. Micropaleoflora from the Late Precambrian in Huainan Region of Anhui Province and Its Stratigraphic Significance. Professional Papers of Stratigraphy and Palaeontology, Chinese Academy of Geological Sciences, 1985, 12: 97-119. (in Chinese)
Yin L M, Sun W G. Microbiota from the Neoproterozoic Liulaobei Formation in the Huainan Region, Northern Anhui, China. Precambrian Research, 1994, 65(1/2/3/4): 95-114.
CrossRef Google scholar
Zang W L, Walter M R. Late Proterozoic and Early Cambrian Microfossils and Biostratigraphy, Northern Anhui and Jiangsu, Central-Eastern China. Precambrian Research, 1992, 57(3/4): 243-323.
Zerkle A L, Poulton S W, Newton R J, . Onset of the Aerobic Nitrogen Cycle during the Great Oxidation Event. Nature, 2017, 542: 465-467.
CrossRef Google scholar
Zhang K, Zhu X, Wood R A, . Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 2018, 11: 345-350.
CrossRef Google scholar
Zhang S C, Wang X M, Wang H J, . Sufficient Oxygen for Animal Respiration 1 400 Million Years Ago. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736.
CrossRef Google scholar
Zhang X N, Sigman D M, Morel F M M, . Nitrogen Isotope Fractionation by Alternative Nitrogenases and Past Ocean Anoxia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4782-4787.
CrossRef Google scholar
Zhao H Q, Zhang S H, Ding J K, . New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. GSA Bulletin, 2020, 132(3/4): 739-766.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/