Low Temperature Thermal History Reconstruction Based on Apatite Fission-Track Length Distribution and Apatite U-Th/He Age Using Low-T Thermo

Ruxin Ding

Journal of Earth Science ›› 2023, Vol. 34 ›› Issue (3) : 717 -725.

PDF
Journal of Earth Science ›› 2023, Vol. 34 ›› Issue (3) : 717 -725. DOI: 10.1007/s12583-020-1071-x
Petrology and Geochemistry

Low Temperature Thermal History Reconstruction Based on Apatite Fission-Track Length Distribution and Apatite U-Th/He Age Using Low-T Thermo

Author information +
History +
PDF

Abstract

Low temperature thermochronology plays a key role in the study of the tectonic evolution of the upper crust. History modeling of apatite fission-track requires the apparent age and the confined track-length distribution of spontaneous tracks. Obtaining length data does not require either thermal neutron irradiation or LA-ICP-MS measurements of the uranium content of the grains. This paper attempts to decouple the apatite fission-track age from the apatite fission-track length, but to combine the fission-track lengths with the respective apatite U-Th/He age to model the thermal history. The experiments were designed and conducted using a new Mathematica® modeling software “Low-T Thermo”. Results of this modeling show that the thermal history modeling of apatite U-Th/He and fission-track ages can constrain the apatite fission-track length thermal history in the He partial retention zone and fission-track partial annealing zone, respectively. It implies that this combination of apatite fission-track length and apatite U-Th/He age has not been implemented before but is presented here as an alternative way of determining thermal histories without the addition of apatite fission-track age.

Keywords

thermal history modeling / apatite / fission track / U-Th/He / tectonics

Cite this article

Download citation ▾
Ruxin Ding. Low Temperature Thermal History Reconstruction Based on Apatite Fission-Track Length Distribution and Apatite U-Th/He Age Using Low-T Thermo. Journal of Earth Science, 2023, 34(3): 717-725 DOI:10.1007/s12583-020-1071-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ault A K, Flowers R M. Is Apatite U-Th Zonation Information Necessary for Accurate Interpretation of Apatite (U-Th)/He Thermochronometry Data?. Geochimica et Cosmochimica Acta, 2012, 79: 60-78.

[2]

Brown R W, Beucher R, Roper S, . Natural Age Dispersion Arising from the Analysis of Broken Crystals. Part I: Theoretical Basis and Implications for the Apatite (U-Th)/He Thermochronometer. Geochimica et Cosmochimica Acta, 2013, 122: 478-497.

[3]

Carlson W D, Donelick R A, Ketcham R A. Variability of Apatite Fission-Track Annealing Kinetics; I, Experimental Results. American Mineralogist, 1999, 84(9): 1213-1223.

[4]

Carslaw H S, Jaeger J C. Conduction of Heat in Solids, 1959, 2nd Ed, Oxford: Clarendon Press, 510.

[5]

Donelick R A, Ketcham R A, Carlson W D. Variability of Apatite Fission-Track Annealing Kinetics; II, Crystallographic Orientation Effects. American Mineralogist, 1999, 84(9): 1224-1234.

[6]

Farley K A. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2903-2914.

[7]

Farley K A. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 819-844.

[8]

Farley K A, Wolf R A, Silver L T. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 1996, 60(21): 4223-4229.

[9]

Flowers R M, Ketcham R A, Shuster D L, . Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 2009, 73(8): 2347-2365.

[10]

Gallagher K. Evolving Temperature Histories from Apatite Fission-Track Data. Earth and Planetary Science Letters, 1995, 136(3/4): 421-435.

[11]

Gallagher K. Transdimensional Inverse Thermal History Modelling for Quantitative Thermochronology. Journal of Geophysical Research, 2012, 117(B2): 373-393.

[12]

Gallagher K, Stephenson J, Brown R, . Low Temperature Thermochronology and Modeling Strategies for Multiple Samples 1: Vertical Profiles. Earth and Planetary Science Letters, 2005, 237(1/2): 193-208.

[13]

Gautheron C, Tassan-Got L, Ketcham R A, . Accounting for Long Alpha-Particle Stopping Distances in (U-Th-Sm)/He Geochronology: 3D Modeling of Diffusion, Zoning, Implantation, and Abrasion. Geochmica et Cosmochimica Acta, 2012, 96: 44-56.

[14]

Jiao R H, Seward D, Little T A, . Thermal History and Exhumation of Basement Rocks from Mesozoic to Cenozoic Subduction Cycles, Central North Island, New Zealand. Tectonics, 2014, 33 10 19201935

[15]

Ketcham R A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 275-314.

[16]

Ketcham R A, Carter A, Donelick R A, . Improved Modeling of Fission-Track Annealing in Apatite. American Mineralogist, 2007, 92(5/6): 799-810.

[17]

Ketcham R A, Donelick R A, Donelick M B. AFTSolve: A Program for Multi-Kinetic Modeling of Apatite Fission-Track Data. Geological Materials Research, 2000, 2: 1-32.

[18]

Ketcham R A, Donelick R A, Balestrieri M L, . Reproducibility of Apatite Fission-Track Length Data and Thermal History Reconstruction. Earth and Planetary Science Letters, 2009, 284(3/4): 504-515.

[19]

Liu S G, Deng B, Jansa L, . Multi-Stage Basin Development and Hydrocarbon Accumulations: A Review of the Sichuan Basin at Eastern Margin of the Tibetan Plateau. Journal of Earth Science, 2018, 29(2): 307-325.

[20]

Marsaglia G, Tsang W W, Wang J B. Evaluating Kolmogorov’s Distribution. Journal of Statistical Software, 2003, 8(18): 1-4.

[21]

Reiners P W, Brandon M T. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 2006, 34: 419-466.

[22]

Reiners P W, Zhou Z Y, Ehlers T A, . Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology. American Journal of Science, 2003, 303(6): 489-518.

[23]

Vermeesch P. HelioPlot, and the Treatment of Overdispersed (U-Th−Sm)/He Data. Chemical Geology, 2010, 271(3/4): 108-111.

[24]

Vermeesch P, Tian Y T. Thermal History Modelling: HeFTy vs. QTQT. Earth-Science Reviews, 2014, 139: 279-290.

[25]

Wolf R A, Farley K A, Kass D M. Modeling of the Temperature Sensitivity of the Apatite (U-Th)/He Thermochronometer. Chemical Geology, 1998, 148(1/2): 105-114.

[26]

Zhou Z Y, Xu C H, Reiners P W, . Late Cretaceous-Cenozoic Exhumation History of Tiantangzhai Region of Dabieshan Orogen: Constraints from (U-Th)/He and Fission Track Analysis. Chinese Science Bulletin, 2003, 48(11): 1151-1156.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/