Geological, Fluid Inclusion, H-O-S-Pb Isotope Constraints on the Genesis of the Erdaogou Gold Deposit, Liaoning Province

Fan Yang , Xuejiao Pang , Bin Li , Jingsheng Chen , Jilong Han , Miao Liu , Zhongzhu Yang , Yan Wang , Yi Shi

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (1) : 103 -115.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (1) : 103 -115. DOI: 10.1007/s12583-020-1068-5
Article

Geological, Fluid Inclusion, H-O-S-Pb Isotope Constraints on the Genesis of the Erdaogou Gold Deposit, Liaoning Province

Author information +
History +
PDF

Abstract

The Erdaogou gold deposit is located in the conjuncture of North China Carton and Xingmeng orogenic belt. The ore-forming process of Erdaogou gold deposit is divided into three stages (I to III), which are quartz-pyrite stage (stage I), quartz-polymetallic sulfide stage (stage II) and quartz-calcite stage (stage III). Two types of fluid inclusions is distinguished in the ore-forming stage, i.e., aqueous type (W-type) and aqueous-carbonic type (C-type) inclusions. From the stage I to III, the homogenization temperature of fluid inclusions are respectively 334–395, 214–364 and 172–272 °C, with salinities of 7.72 wt.%–11.23 wt.% NaCl equiv., 0.20 wt.%–23.18 wt.% NaCl equiv., and 0.35 wt.% to 5.25 wt.% NaCl equiv. The ore-forming fluids of the Erdaogou deposit have the characteristics of medium-low temperatures, moderate salinities and low densities. And the fluids belong to the CO2-H2O-NaCl system. The values of δ34SV-CDT in sulphide samples at different stages (stages I to III) are between −2.2‰ to 2.3‰, indicating sulfur source from magma volatiles or subvolcanic rock leaching. The lead isotopes suggest that ore-forming metals may be derived from a mixture of lower crust and mantle materials. Oxygen and hydrogen isotope data at Erdaogou indicate that magmatic fluid and meteoric water may both be involved in the hydrothermal system. Based on the geological characteristics, fluid inclusion results, stable and radiogenic isotope results of Erdaogou gold deposit, we believe that the temperature decrease, fluid boiling are the key factors leading to the ore precipitation and the genetic type of Erdaogou gold deposit is low-sulfidation epithermal deposit.

Keywords

fluid inclusion / isotope systematic / ore genesis / Erdaogou gold deposit / Liaoning Province

Cite this article

Download citation ▾
Fan Yang, Xuejiao Pang, Bin Li, Jingsheng Chen, Jilong Han, Miao Liu, Zhongzhu Yang, Yan Wang, Yi Shi. Geological, Fluid Inclusion, H-O-S-Pb Isotope Constraints on the Genesis of the Erdaogou Gold Deposit, Liaoning Province. Journal of Earth Science, 2021, 32(1): 103-115 DOI:10.1007/s12583-020-1068-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akaryali E, Akbulut K. Constraints of C-O-S Isotope Compositions and the Origin of the Ünlüpınar Volcanic-Hosted Epithermal Pb-Zn±Au Deposit, Gümüşhane, NE Turkey. Journal of Asian Earth Sciences, 2016, 117: 119-134.

[2]

Alderton D H M, Fallick A E. The Nature and Genesis of Gold-Silver-Tellurium Mineralizationin the Metaliferi Mountains of Western Romania. Economic Geology, 2000, 95(3): 495-516.

[3]

Ashrafpour E, Ansdell K M, Alirezaei S. Hydrothermal Fluid Evolution and Ore Genesis in the Arghash Epithermal Gold Prospect, Northeastern Iran. Journal of Asian Earth Sciences, 2012, 51: 30-44.

[4]

Audétat A, Pettke T, Heinrich C A, . The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Economic Geology, 2008, 103(5): 877-908.

[5]

Benning L G, Seward T M. Hydrosulphide Complexing of Au (I) in Hydrothermal Solutions from 150–400 °C and 500–1500 Bar. Geochimica et Cosmochimica Acta, 1996, 60(11): 1849-1871.

[6]

Clayton R N, O’Neil J R, Mayeda T K. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 1972, 77(17): 3057-3067.

[7]

Coleman M L, Shepherd T J, Durham J J. Reduction of Water with Zinc for Hydrogen Isotope Analysis. Analytical Chemistry, 1982, 54(6): 993-995.

[8]

Corbett, G. J., Leach, T. M., 1998. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Society of Economic Geologists. Bookcrafters 613 E, Michigan. 1–237

[9]

Doe BR, Zartman R E. Plumbotectonics, the Phanerozoic, 1979, New York: John Wiley & Sons, 22-70.

[10]

Fu L B. The Mesozoic Tectonic-Magmatic Evolution Process and Gold Metalloggenesis in Chifeng-Chaoyang Region, Northern North China Craton, 2012, Beijing: China University of Geosciences, 1-142.

[11]

Gammons C H, Williams, Jones A E, Yu Y. New Data on the Stability of Gold(I) Chloride Complexes at 300 °C. Mineralogical Magazine, 1994, 58A(1): 309-310.

[12]

Guo H Z. Using Rb-Sr Isotope Study of the Genesis of the Erdaogou Gold Deposits. Acta Scientiarum Naturalium Universitatis Sunyaeseni, 1994, 33(4): 132-137.

[13]

Guo L N, Liu S S, Hou L, . Fluid Inclusion and H-O Isotope Geochemistry of the Phapon Gold Deposit, NW Laos: Implications for Fluid Source and Ore Genesis. Journal of Earth Science, 2019, 30(1): 80-94.

[14]

Hedenquist J W, Lowenstern J B. The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 1994, 370(6490): 519-527.

[15]

Heinrich C A, Driesner T, Stefánsson A, . Magmatic Vapor Contraction and the Transport of Gold from the Porphyry Environment to Epithermal Ore Deposits. Geology, 2004, 32(9): 761-764.

[16]

Hoefs J. Stable Isotope Geochemistry, 1980, 2nd Ed., Berlin, Heidelberg, New York: Springer-Verlag, 208

[17]

Hou W R. Contrast Study on the Hadamengou Gold Deposit and Jinchanggouliang Gold Deposit, Inner Mongolia, 2011, Beijing: Chinese Academy of Geological Sciences, 1-213.

[18]

Jahn B M. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 2004, 226(1): 73-100.

[19]

Kusky T M, Windley B F, Zhai M G. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. Geological Society, London, Special Publications, 2007, 280(1): 1-34.

[20]

Li S R, Santosh M. Metallogeny and Craton Destruction: Records from the North China Craton. Ore Geology Reviews, 2014, 56: 376-414.

[21]

Liu H B, Jin G S, Li J J. Determination of Stable Isotope Composition in Uranium Geological Samples. World Nuclear Geoscience, 2013, 30(3): 174-179.

[22]

Liu S W, Santosh M, Wang W, . Zircon U-Pb Chronology of the Jianping Complex: Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton. Gondwana Research, 2011, 20(1): 48-63.

[23]

Lu H Z. Role of CO2 Fluid in the Formation of Gold Deposits: Fluid Inclusion Evidences. Geochimica, 2008, 37(4): 321-328.

[24]

Mao J W, Li X F, White N C, . Types, Characteristics, and Geodynamic Settings of Mesozoic Epithermal Gold Deposits in Eastern China. Resource Geology, 2007, 57(4): 435-454.

[25]

Marumo K, Nagasawa K, Kuroda Y. Mineralogy and Hydrogen Isotope Geochemistry of Clay Minerals in the Ohnuma Geothermal Area, Northeastern Japan. Earth and Planetary Science Letters, 1980, 47(2): 255-262.

[26]

Meng Q R. What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract?. Tectonophysics, 2003, 369(3/4): 155-174.

[27]

Miao L C, Fan W M, Zhai M G. Zircon SHRIMP U-Pb Geochronology of the Granitoid Intrusions from Jianchanggouliang-Erdaogou Gold Ore Field and Its Significance. Acta Petrologica Sinica, 2003, 19(1): 71-80.

[28]

Mikucki E J. Hydrothermal Transport and Depositional Processes in Archean Lode-Gold Systems: A Review. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 307-321.

[29]

Niu S D, Li S R, Santosh M, . Mineralogical and Isotopic Studies of Base Metal Sulfides from the Jiawula Ag-Pb-Zn Deposit, Inner Mongolia, NE China. Journal of Asian Earth Sciences, 2016, 115: 480-491.

[30]

Ohmoto H. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy and Geochemistry, 1986, 16(1): 491-559.

[31]

Ohmoto H, Goldhaber M B. Sulfur and Carbon Isotopes, 1997, New York: John Wiley & Sons, 517-611.

[32]

Ohmoto H, Rye R O. Isotopes of Sulfur and Carbon, 1979, New York: John Wiley & Sons, 509-567.

[33]

Pang J L. Physicochemical Environment for Erdaogou Deposit, Liaoning Province. Journal of Shanxi Normal University (Natural Science Edition), 1997, 25(1): 91-96.

[34]

Pang J L. Hydrogen and Oxygen Isotope in Erdaogou Gold Deposit, Liaoning Province. Journal of Shanxi Normal University (Natural Science Edition), 1998, 26(2): 81-85.

[35]

Pang J L, Qiu Y Z. A New Understanding of the Genesis of Erdaogou Gold Deposit in Western Liaoning Province—An Adularia-Sericite Type Epithermal deposit. Gold Science and Technology, 1994, 4: 7-10.

[36]

Pang J L, Qiu Y Z. Study on Metallogenic Geochemical Conditions of Erdaogou Gold Deposit in Liaoning Province. Geology and Geochemistry, 1996, 4: 25-29.

[37]

Ramboz C, Pichavant M, Weisbrod A. Fluid Immiscibility in Natural Processes: Use and Misuse of Fluid Inclusion Data. Chemical Geology, 1982, 37(1/2): 29-48.

[38]

Şengör A M C, Natal’In B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 1993, 364(6435): 299-307.

[39]

Simmons S F, Arehart G, Simpson M P, . Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology, 2000, 95(1): 99-112.

[40]

Simmons S F, Christenson B W. Origins of Calcite in a Boiling Geothermal System. American Journal of Science, 1994, 294(3): 361-400.

[41]

Simmons, S. F., White, N. C., John, D. A., 2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits. Society of Economic Geologists, Littleton. 485–522

[42]

Sun Z J. Study on Gold Deposits Mineralization in Chifeng-Chaoyang Region, Northern Margin of North China Craton, 2013, Jilin: Jilin University, 1-194.

[43]

Taylor H P. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 1974, 69(6): 843-883.

[44]

Taylor H P. Oxygen and Hydrogen Isotope Relationships in Hydrothermalmineral Deposits, 1997, New York: John Wiley & Sons, 229-302.

[45]

Wang F X, Sun A Q, Pei R F. Geological, Geochemical Characteristics and the Genetic Mechanism of the Zhuanshanzi Gold Deposit in Inner Mongolia, China. Acta Geologica Sinica, 2016, 90(8): 1798-1816.

[46]

Wang G G, Ni P, Wang R C, . Geological, Fluid Inclusion and Isotopic Studies of the Yinshan Cu-Au-Pb-Zn-Ag Deposit, South China: Implications for Ore Genesis and Exploration. Journal of Asian Earth Sciences, 2013, 74: 343-360.

[47]

Wang K, Wang Y H, Xue C J, . Fluid Inclusions and C-H-O-S-Pb Isotope Systematics of the Caixiashan Sediment-Hosted Zn-Pb Deposit, Eastern Tianshan, Northwest China: Implication for Ore Genesis. Ore Geology Reviews, 2020, 119 103404

[48]

Wang Z, Xu Z X, Yang F H. Geology and Genesis of Erdaogou Gold Deposit, Liaoning Province. Journal of Changchun University of Earth Science, 1989, 19(3): 287-297.

[49]

Wei C D. Classification and Research on Gold-Deposits of Long Distance Type and Short Distance Type in Chifeng-Chaoyang Region, 2001, Changchun: Jilin University, 1-80.

[50]

White N C, Hedenquist J W. Epithermal Gold Deposits. Styles, Characteristics and Exploration. Society of Economic Geologists News, 1995, 27: 1-13.

[51]

Xiao W J, Windley B F, Huang B C, . End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 2009, 98(6): 1189-1217.

[52]

Xu W C. Geochemistry and Significance of Erdaogou Gold Deposit in Beipiao, Liaoning Province. Geology and Resources, 2007, 16(4): 263-269.

[53]

Yan Y T, Li S R, Jia B J. Composition Typomorphic Characteristics and Statistic Analysis of Pyrite in Gold Deposits of Different Genetic Types. Earth Science Fronitiers, 2012, 19(4): 214-226.

[54]

Yang F. Metallogenic Study of Epithermal Gold Deposits in Chifeng-Chaoyang Area, the Eastern Section of the Margin of the North China Platform, 2019, Jilin: Jilin University, 1-163.

[55]

Yang F, Pang X J, Wu M. Geochronology, Geochemistry and Hf Isotopic Compositions of Granitoids in Jingchanggouliang Area, Chifeng, Inner Mongolia. Earth Science, 2019, 44(10): 3209-3222.

[56]

Yang J H, Wu F Y, Chung S L, . Rapid Exhumation and Cooling of the Liaonan Metamorphic Core Complex: Inferences from 40Ar/39Ar Thermochronology and Implications for Late Mesozoic Extension in the Eastern North China Craton. Geological Society of America Bulletin, 2007, 119(11/12): 1405-1414.

[57]

Zartman R E, Doe B R. Plumbotectonics—The Model. Tectonophysics, 1981, 75(1/2): 135-162.

[58]

Zhang Y Q, Dong S W. Mesozoic Tectonic Evolution History of the Tan-Lu Fault Zone, China: Advances and New Understanding. Geological Bulletin of China, 2008, 27: 1371-1390.

[59]

Zheng Y F. Calculation of Oxygen Isotope Fractionation in Anhydrous Silicate Minerals. Geochimica et Cosmochimica Acta, 1993, 57: 1079-1091.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/