Source and Evolution of the Ore-Forming Fluids of Carlin-Type Gold Deposit in the Youjiang Basin, South China: Evidences from Solute Data of Fluid Inclusion Extracts

Xiaoye Jin, Chengfu Yang, Jianzhong Liu, Wu Yang

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (1) : 185-194.

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (1) : 185-194. DOI: 10.1007/s12583-020-1055-x
Article

Source and Evolution of the Ore-Forming Fluids of Carlin-Type Gold Deposit in the Youjiang Basin, South China: Evidences from Solute Data of Fluid Inclusion Extracts

Author information +
History +

Abstract

The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit. Constraints on the source and evolution of ore fluid components by the conventional geochemical methods have long been a challenge due to the very fine-grained nature and complex textures of hydrothermal minerals in these deposits. In this study, we present the crush-leach analyzed solute data of fluid inclusion extracts within quartz, calcite, realgar, and fluorite from the Shuiyindong, Nibao, and Yata gold deposits in the Youjiang Basin, providing new insights into the source and evolution of ore-forming fluids. The results show that the high molar Cl/Br ratios up to 2 508 in fluid inclusion extracts are indicative of a contribution of magmatic hydrothermal fluids. Fluids mixing between basinal and magmatic-hydrothermal fluids are evident on the plots of Cl/Br versus Na/K ratios, showing that ore-stage milky quartz near the magmatic-hydrothermal fluids reflects magma origin of the ore-forming fluids, whereas late ore-stage drusy quartz and realgar near the defined basinal fluids suggest the later input of basinal fluids in late-ore stage. Although the predominately host rocks in Shuiyindong, Nibao and Yata gold deposit are bioclastic limestone, sedimentary tuff, and calcareous siltstone, respectively, the solute data of fluid inclusion extracts records they underwent the similar fluid-rocks reactions between the Na-rich magmatic hydrothermal fluids and the Ca- and Mg-rich host rocks. This study highlights the solute data of fluid inclusion extracts obtained by crush-leach analyses have the potential to fingerprint the source and evolution of ore-forming fluids of the Carlin-type gold deposit.

Keywords

solute data / fluid inclusion / source and evolution of ore-forming fluids / Carlin-type gold deposit / Youjiang Basin

Cite this article

Download citation ▾
Xiaoye Jin, Chengfu Yang, Jianzhong Liu, Wu Yang. Source and Evolution of the Ore-Forming Fluids of Carlin-Type Gold Deposit in the Youjiang Basin, South China: Evidences from Solute Data of Fluid Inclusion Extracts. Journal of Earth Science, 2021, 32(1): 185‒194 https://doi.org/10.1007/s12583-020-1055-x

References

Ashley R P, Cunningham C G, Bostick N H, . Geology and Geochemistry of Three Sedimentary-Rock-Hosted Disseminated Gold Deposits in Guizhou Province, People’s Republic of China. Ore Geology Reviews, 1991, 6(2/3): 133-151.
CrossRef Google scholar
Bons P D, Fusswinkel T, Gomez-Rivas E, . Fluid Mixing from below in Unconformity-Related Hydrothermal Ore Deposits. Geology, 2014, 42(12): 1035-1038.
CrossRef Google scholar
Bouabdellah M, Castorina F, Bodnar R J, . Petroleum Migration, Fluid Mixing, and Halokinesis as the Main Ore-Forming Processes at the Peridiapiric Jbel Tirremi Fluorite-Barite Hydrothermal Deposit, Northeastern Morocco. Economic Geology, 2014, 109(5): 1223-1256.
CrossRef Google scholar
Chen M H, Mao J W, Bierlein F P, . Structural Features and Metallogenesis of the Carlin-Type Jinfeng (Lannigou) Gold Deposit, Guizhou Province, China. Ore Geology Reviews, 2011, 43(1): 217-234.
CrossRef Google scholar
Chen M H, Mao J W, Li C, . Re-Os Isochron Ages for Arsenopyrite from Carlin-Like Gold Deposits in the Yunnan-Guizhou-Guangxi “Golden Triangle”, Southwestern China. Ore Geology Reviews, 2015, 64: 316-327.
CrossRef Google scholar
Crocetti C A, Holland H D. Sulfur-Lead Isotope Systematics and the Composition of Fluid-Inclusions in Galena from the Viburnum Trend, Missouri. Economic Geology, 1989, 84(8): 2196-2216.
CrossRef Google scholar
Dolejš D, Wagner T. Thermodynamic Modeling of Non-Ideal Mineral-Fluid Equilibria in the System Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at Elevated Temperatures and Pressures: Implications for Hydrothermal Mass Transfer in Granitic Rocks. Geochimica et Cosmochimica Acta, 2008, 72(2): 526-553.
CrossRef Google scholar
Emsbo P. Fluid Inclusion Cl-Br-Na Ratios Implicate Residual Evaporative Brines in the Formation of Supergiant Sedex Zinc Deposits. 2009 Portland GSA Annual Meeting: Geological Society of America Abstracts with Programs, 2009, 41 7 254.
Frenzel M, Cook N J, Ciobanu C L, . Halogens in Hydrothermal Sphalerite Record Origin of Ore-Forming Fluids. Geology, 2020, 48(8): 766-770.
CrossRef Google scholar
Gu X X, Zhang Y M, Li B H, . Hydrocarbon- and Ore-Bearing Basinal Fluids: A Possible Link between Gold Mineralization and Hydrocarbon Accumulation in the Youjiang Basin, South China. Mineralium Deposita, 2012, 47(6): 663-682.
CrossRef Google scholar
Hammerli J, Rusk B, Spandler C, . In situ Quantification of Br and Cl in Minerals and Fluid Inclusions by LA-ICP-MS: A Powerful Tool to Identify Fluid Sources. Chemical Geology, 2013, 337/338 752009 87
CrossRef Google scholar
Hofstra A H, Cline J S. Characteristics and Models for Carlin-Type Gold Deposits. Reviews in Economic Geology, 2000, 13: 163-220.
Hofstra A H, Meighan C J, Song X Y, . Mineral Thermometry and Fluid Inclusion Studies of the Pea Ridge Iron Oxide-Apatite-Rare Earth Element Deposit, Mesoproterozoic St. Francois Mountains Terrane, Southeast Missouri, USA. Economic Geology, 2016, 111(8): 1985-2016.
CrossRef Google scholar
Hou L, Peng H J, Ding J, . Textures and in situ Chemical and Isotopic Analyses of Pyrite, Huijiabao Trend, Youjiang Basin, China: Implications for Paragenesis and Source of Sulfur. Economic Geology, 2016, 111(2): 331-353.
CrossRef Google scholar
Hu R Z, Su W C, Bi X W, . Geology and Geochemistry of Carlin-Type Gold Deposits in China. Mineralium Deposita, 2002, 37 3/4 3782009 392.
Hu R Z, Fu S L, Huang Y, . The Giant South China Mesozoic Low-Temperature Metallogenic Domain: Reviews and a New Geodynamic Model. Journal of Asian Earth Sciences, 2017, 137: 9-34.
CrossRef Google scholar
Jin X Y. Geology, Mineralization and Genesis of the Nibao, Shuiyindong and Yata Gold Deposits in SW Guizhou Province, China, 2017, Wuhan: China University of Geoscience, 1-228.
Jin X Y, Hofstra A H, Andrew G H, . Noble Gases Fingerprint the Source and Evolution of Ore-Forming Fluids of Carlin-Type Gold Deposits in the Golden Triangle, South China. Economic Geology, 2020, 115(2): 455-469.
CrossRef Google scholar
Kesler S E, Appold M S, Martini A M, . Na-Cl-Br Systematics of Mineralizing Brines in Mississippi Valley-Type Deposits. Geology, 1995, 23 7 641
CrossRef Google scholar
Large S J E, Bakker E Y N, Weis P, . Trace Elements in Fluid Inclusions of Sediment-Hosted Gold Deposits Indicate a Magmatic-Hydrothermal Origin of the Carlin Ore Trend. Geology, 2016, 44(12): 1015-1018.
CrossRef Google scholar
Li W T, Audétat A, Zhang J. The Role of Evaporites in the Formation of Magnetite-Apatite Deposits along the Middle and Lower Yangtze River, China: Evidence from LA-ICP-MS Analysis of Fluid Inclusions. Ore Geology Reviews, 2015, 67: 264-278.
CrossRef Google scholar
Liu J M, Liu J J. Basin Fluid Genetic Model of Sediment-Hosted Micro-Disseminated Gold Deposits in the Gold-Triangle Area between Guizhou, Guangxi and Yunnan. Acta Mineralogica Sinica, 1997, 17(4): 448-456.
Liu J M, Ye J, Ying H L, . Sediment-Hosted Mcro-Disseminated Gold Mineralization Constrained by Basin Paleo-Topographic Highs in the Youjiang Basin, South China. Journal of Asian Earth Sciences, 2002, 20(5): 517-533.
CrossRef Google scholar
Liu J Z, Deng Y M, Liu C Q, . Metallogenic Conditions and Model of the Superlarge Shuiyindong Stratabound Gold Deposit in Zhenfeng County, Guizhou Province, China. Geology in China, 2006, 33(1): 169-177.
Liu P, Du F Y, Du C Q. Discussion on Origin of Nibao Gold Deposit in View of the Characteristics of Fluid Inclusion. Guizhou Geology, 2006, 23(1): 44-50.
Liu S, Su W C, Hu R Z, . Geochronological and Geochemical Constraints on the Petrogenesis of Alkaline Ultramafic Dykes from Southwest Guizhou Province, SW China. Lithos, 2010, 114(1/2): 253-264.
CrossRef Google scholar
McCaffrey M A, Lazar B, Holland H D. The Evaporation Path of Seawater and the Coprecipitation of Br And K+ with Halite. SEPM Journal of Sedimentary Research, 1987, 57: 928-937.
Pang B C, Lin C S, Luo X R, . The Characteristic and Origin of Ore-Forming Fluid From Micro-Disseminated Gold Deposits in Youjiang Basin. Geology and Prospecting, 2005, 41(1): 13-17.
Pi Q H, Hu R Z, Peng K Q, . Geochronology of the Zhesang Gold Deposit and Mafic Rock in Funing County of Yunnan Province, with Special Reference to the Dynamic Background of Carlin-Type Gold Deposits in the Dian-Qian-Gui Region. Acta Petrologica Sinica, 2016, 32(11): 3331-3342.
Qi L S, He Y N, Qi J, . Ore-Control Structure Type and Its Regulation of Nibao Gold Deposit in Guizhou. Guizhou Geology, 2014, 31(1): 1-9.
Saunders A D, Jones S M, Morgan L A, . Regional Uplift Associated with Continental Large Igneous Provinces: The Roles of Mantle Plumes and the Lithosphere. Chemical Geology, 2007, 241(3/4): 282-318.
CrossRef Google scholar
Su W C, Heinrich C A, Pettke T, . Sediment-Hosted Gold Deposits in Guizhou, China: Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Economic Geology, 2009, 104(1): 73-93.
CrossRef Google scholar
Su W C, Zhang H T, Hu R Z, . Mineralogy and Geochemistry of Gold-Bearing Arsenian Pyrite from the Shuiyindong Carlin-Type Gold Deposit, Guizhou, China: Implications for Gold Depositional Processes. Mineralium Deposita, 2012, 47(6): 653-662.
CrossRef Google scholar
Su W C, Dong W D, Zhang X C, . Carlin-Type Gold Deposits in the Dian-Qian-Gui “Golden Triangle” of Southwest China. Reviews in Economic Geology, 2018, 20: 157-185.
Suo S T, Bi X M, Zhao W X. Very Low-Grade Metamorphism and Its Geodynamical Significance of Triassic Strata within the Youjiang River Basin. Scientia Geologica Sinica, 1998, 33(4): 395-405.
Tai Y H, Li Y S. Study on the Geological Features and the Genesis of Zimudang Micro-Particle Disseminated (Carlin) Type Gold Deposit. Gold, 2006, 27(9): 14-17.
Tan Q P, Xia Y, Xie Z J, . S, C, O, H, and Pb Isotopic Studies for the Shuiyindong Carlin-Type Gold Deposit, Southwest Guizhou, China: Constraints for Ore Genesis. Chinese Journal of Geochemistry, 2015, 34(4): 525-539.
CrossRef Google scholar
Tao C G, Liu J S, Dai G H. On the Gold Ore Deposit Geological Characteristics and Genesis of Yata, Ceheng. Geology of Guizhou, 1987, 4: 135-150.
Xie Z J, Xia Y, Cline J S, . Magmatic Origin for Sediment-Hosted Au Deposits, Guizhou Province, China: In situ Chemistry and Sulfur Isotope Composition of Pyrites, Shuiyindong and Jinfeng Deposits. Economic Geology, 2018, 113(7): 1627-1652.
CrossRef Google scholar
Xie Z J, Xia Y, Cline J S, . Are there Carlin-Type Gold Deposits in China? A Comparison of the Guizhou, China, Deposits with Nevada, USA, Deposits. Reviews in Economic Geology, 2018, 20: 187-233.
Viets, J. G., Hofstra, A. H., Emsbo, P., 1996. Solute Compositions of Fluid Inclusions in Sphalerite from North American and European Mississippi Valley-Type Ore Deposits: Ore Fluids Derived from Evaporated Seawater. In: Sangster, D. F., ed., Carbonate-Hosted Lead-Zinc Deposits 75th Anniversary Volume. Society of Economic Geologists, Inc. Littleton. Economic Geology Special Publication, 4: 465–486
Wang L, Long C L, Liu Y. Discussion on Concealed Rock Mass Delineation and Gold Source in Southwestern Guizhou. Geoscience, 2015, 29(3): 702-712.
Wei D T, Xia Y, Gregory D D, . Multistage Pyrites in the Nibao Disseminated Gold Deposit, Southwestern Guizhou Province, China: Insights into the Origin of Au from Textures, in situ Trace Elements, and Sulfur Isotope Analyses. Ore Geology Reviews, 2020, 122 103446
CrossRef Google scholar
Wu S Y, Hou L, Jowitt S M, . Geochronology, Geochemistry and Petrogenesis of Late Triassic Dolerites Associated with the Nibao Gold Deposit, Youjiang Basin, Southwestern China: Implications for Post-Collisional Magmatism and Its Relationships with Carlin-Like Gold Mineralization. Ore Geology Reviews, 2019, 111 102971
CrossRef Google scholar
Zaw K, Peters S G, Cromie P, . Nature, Diversity of Deposit Types and Metallogenic Relations of South China. Ore Geology Reviews, 2007, 31(1/2/3/4): 3-47.
CrossRef Google scholar
Zhang J R, Hou L, Zou Z C, . LA-ICP-MS in situ Trace Element Analysis of Auriferous Arsenic Pyrites from the Nibao Gold Deposit and Its Constraints on the Ore Genesis. Acta Petrologica Et Mineralogica, 2016, 35(3): 493-505.
Zhang X C, Spiro B, Halls C, . Sediment-Hosted Disseminated Gold Deposits in Southwest Guizhou, PRC: Their Geological Setting and Origin in Relation to Mineralogical, Fluid Inclusion, and Stable-Isotope Characteristics. International Geology Review, 2003, 45(5): 407-470.
CrossRef Google scholar
Zheng L L, Yang R D, Gao J B, . Geochemical Characteristics of the Giant Nibao Carlin-Type Gold Deposit (Guizhou, China) and Their Geological Implications. Arabian Journal of Geosciences, 2016, 9(2): 1-16.
CrossRef Google scholar
Zhu X Q, Wang Z G. Gold Occurrence and Ore Genesis, Yata Micro-Disseminated Gold Deposit, Guizhou, Southwest China. Chinese Journal of Geochemistry, 2002, 21(4): 370-373.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/