Geology, Geochemistry and Re-Os Age of the Qiaoxiahala Deposit in NW China: Evidence of an Overprinted Fe(-Cu/Au) Deposit

Zhongjiang Zang , Wei Liu , Leilei Dong

Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (1) : 208 -218.

PDF
Journal of Earth Science ›› 2021, Vol. 32 ›› Issue (1) : 208 -218. DOI: 10.1007/s12583-020-1054-y
Article

Geology, Geochemistry and Re-Os Age of the Qiaoxiahala Deposit in NW China: Evidence of an Overprinted Fe(-Cu/Au) Deposit

Author information +
History +
PDF

Abstract

Overprinting of an earlier formed deposit may obscure the nature of the deposit and hinder our understanding of regional metallogeny. The Qiaoxiahala Fe(-Cu/Au) deposit in eastern Junggar, NW China, is characterized by magnetite mineralization later replaced by sulfide minerals such as chalcopyrite. To reveal the genesis of Qiaoxiahala, we conducted Re-Os dating on post-magnetite molybdenite separated from chalcopyrite and rare earth elements (REEs) for basaltic volcanic rock, magnetite, chalcopyrite and diorite. An isochron age of 377±7 Ma was obtained together with a weighted mean age of 375±3 Ma, which is indistinguishable from mineralization ages determined in previous studies. Rare earth element (REE) data for basaltic volcanic rocks hosting the ore are comparable to that of the magnetite, while the REE signatures of chalcopyrite from the Cu ore and local intrusive diorite share a similar pattern. These suggest that two distinct fluid sources are responsible for the deposition of Fe and Cu in the Qiaoxiahala deposit. According to these experimental results, we consider that the iron mineralization in Qiaoxiahala is the result of fluid exsolution from basaltic volcanism which was further overprinted by fluids that deposited copper and gold, which may have been sourced from nearby dioritic intrusions.

Keywords

Qiaoxiahala / overprinted mineralization / East Junggar / Fe(-Cu/Au) mineralization / Re-Os age

Cite this article

Download citation ▾
Zhongjiang Zang, Wei Liu, Leilei Dong. Geology, Geochemistry and Re-Os Age of the Qiaoxiahala Deposit in NW China: Evidence of an Overprinted Fe(-Cu/Au) Deposit. Journal of Earth Science, 2021, 32(1): 208-218 DOI:10.1007/s12583-020-1054-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anonymous, 1978. 1: 200 000 Geological and Metallogenic Map and Explaination Note of Fuyun Sheet (L-45-XII). Xinjiang Bureau of Geology, Xinjiang. 163 (in Chinese)

[2]

Atkinson W W, Einaudi M T. Skarn Formation and Mineralization in the Contact Aureole at Carr Fork, Bingham, Utah. Economic Geology, 1978, 73(7): 1326-1365.

[3]

BGMRX Regional Geology of Xinjiang Uygur Autonomous Region, People’s Republic of China. Geological Memoirs, 1993, 1(32): 6-206.

[4]

Chai F M, Yang F Q, Liu F, . Geochronology and Genesis of Volcanic Rocks in Beitashan Formation at the Northern Margin of the Junggar, Xinjiang. Acta Petrologica Sinica, 2012, 28(7): 2183-2198.

[5]

Ciobanu C L, Cook N J. Skarn Textures and a Case Study: The Ocna de Fier-Dognecea Orefield, Banat, Romania. Ore Geology Reviews, 2004, 24(3/4): 315-370.

[6]

Deng, J., Wang, J., Liao, Q., 2000. Evalution of the Cu-Au Metallogenic Potential in Buergen Ore Belt. State 305 Project Office, Internal Report

[7]

Dong L L, Wan B, Deng C, . An Early Permian Epithermal Gold System in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ Oxygen-Sulfur Isotopes and Geochronology. Journal of Asian Earth Sciences, 2018, 153: 412-424.

[8]

Du A D, Wu S Q, Sun D Z, . Preparation and Certification of Re-Os Dating Reference Materials: Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 2004, 28(1): 41-52.

[9]

Einaudi M T, Burt D M. Introduction: Terminology, Classification, and Composition of Skarn Deposits. Economic Geology, 1982, 77(4): 745-754.

[10]

Franklin J M, Gibson H L, Galley A G, . Hedenquist J W, Thompson J F H, Goldfarb R J, . Volcanogenic Massive Sulfide Deposits. Economic Geology 100th Anniversary Volume, 2005, Littleton, CO: Society of Economic Geologists, 523-560.

[11]

Gao J, Long L L, Klemd R, . Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 2009, 98(6): 1221-1238.

[12]

Groves D I, Bierlein F P, Meinert L D, . Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Economic Geology, 2010, 105(3): 641-654.

[13]

Guo L N, Liu S S, Hou L, . Fluid Inclusion and H-O Isotope Geochemistry of the Phapon Gold Deposit, NW Laos: Implications for Fluid Source and Ore Genesis. Journal of Earth Science, 2019, 30(1): 80-94.

[14]

Hannington, M. D., de Ronde, C. E. J., Petersen, S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., In 100th Anniversary Volume, 1905–2005, Society of Economic Geologists. 111–142

[15]

Li Q, Zhang Z X, Geng X X, . Geology and Geochemistry of the Qiaoxiahala Fe-Cu-Au Deposit, Junggar Region, Northwest China. Ore Geology Reviews, 2014, 57: 462-481.

[16]

Li T. Geology and Metallogenic Analysis of the Qiaoxiahala Gold-Copper-Iron Deposit in Fuyun County, Xinjiang. Geology and Prospecting, 2002, 38: 18-21.

[17]

Liang P, Chen H Y, Han J S, . Iron Oxide-Copper-Gold Mineralization of the Devonian Laoshankou Deposit (Xinjiang, NW China) in the Central Asian Orogenic Belt. Ore Geology Reviews, 2019, 104: 628-655.

[18]

Liang P, Chen H Y, Wu C, . Mineralization and Ore Genesis of the Qiaoxiahala Fe-Cu-(Au) Deposit in the Northern Margin of East Junggar Terrane, Central Asian Orogenic Belt: Constraints from Fluid Inclusions and Stable Isotopes. Ore Geology Reviews, 2018, 100: 360-384.

[19]

Liu W, Dai G, Liao Q. Discussion on Genesisi of Qiaoxiahala Copper Gold Ore Deposit, Fuyun County, Xinjiang. Contributions to Geology and Mineral Resources Research, 2006, 21(4): 232-235.

[20]

Long L, Wang J B, Wang Y W, . Geochronology and Geochemistry of the Ore-Bearing Porphyry in Xilekuduke Cu-Mo Deposit, Fuyun Area, Xinjiang, China. Geological Bulletin of China, 2009, 28(12): 1840-1851.

[21]

Long X P, Yuan C, Sun M, . Geochemistry and U-Pb Detrital Zircon Dating of Paleozoic Graywackes in East Junggar, NW China: Insights into Subduction-Accretion Processes in the Southern Central Asian Orogenic Belt. Gondwana Research, 2012, 21(2/3): 637-653.

[22]

Ludwig K R. ISOPLOT 3.0—A Geochronological Toolkit for Microsoft Excel, 2003, Berkeley: Berkeley Geochronology Center Special Publication, 70.

[23]

Mao J W, Pirajno F, Zhang Z H, . A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China): Principal Characteristics and Ore-Forming Processes. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 184-203.

[24]

Meinert L D, Dipple G M, Nicolescu S, . Hedenquist J W, Thompson J F H, Goldfarb R J, . World Skarn Deposits. Economic Geology 100th Anniversary Volume, 2005, Littleton, CO: Society of Economic Geologists, 299-405.

[25]

Nielsen R L, Forsythe L M, Gallahan W E, . Major- and Trace-Element Magnetite-Melt Equilibria. Chemical Geology, 1994, 117(1/2/3/4): 167-191.

[26]

Niu H C, Sato H, Zhang H X, . Juxtaposition of Adakite, Boninite, High-TiO2 and Low-TiO2 Basalts in the Devonian Southern Altay, Xinjiang, NW China. Journal of Asian Earth Sciences, 2006, 28(4/5/6): 439-456.

[27]

Oyman T. Geochemistry, Mineralogy and Genesis of the Ayazmant Fe-Cu Skarn Deposit in Ayvalik, (Balikesir), Turkey. Ore Geology Reviews, 2010, 37(3/4): 175-201.

[28]

Porter, M., 2010. Current Understanding of Iron Oxide Associated-Alkali Altered Mineralised Systems: Part I, An Overview. 5–32

[29]

Richards J P, López G P, Zhu J J, . Contrasting Tectonic Settings and Sulfur Contents of Magmas Associated with Cretaceous Porphyry Cu±Mo±Au and Intrusion-Related Iron Oxide Cu-Au Deposits in Northern Chile. Economic Geology, 2017, 112(2): 295-318.

[30]

Roberts D E, Hudson G R T. The Olympic Dam Copper-Uranium-Gold Deposit, Roxby Downs, South Australia: Reply. Economic Geology, 1983, 79(8): 1944-1945.

[31]

Selby D, Creaser R A, Stein H J, . Assessment of the 187Re Decay Constant by Cross Calibration of Re-Os Molybdenite and U-Pb Zircon Chronometers in Magmatic Ore Systems. Geochimica et Cosmochimica Acta, 2007, 71(8): 1999-2013.

[32]

Sherrell R M, Field M P, Ravizza G. Uptake and Fractionation of Rare Earth Elements on Hydrothermal Plume Particles at 9°45’N, East Pacific Rise. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1709-1722.

[33]

Shu L S, Wang Y J. Late Devonian-Early Carboniferous Radiolarian Fossils from Siliceous Rocks of the Kelameili Ophiolite, Xinjiang. Geological Review, 2003, 49: 408-413.

[34]

Sillitoe R H. Are Porphyry Copper and Kuroko-Type Massive Sulfide Deposits Incompatible?. Geology, 1980, 8 1 11

[35]

Smoliar M I, Walker R J, Morgan J W. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 1996, 271(5252): 1099-1102.

[36]

Stein H J, Markey R J, Morgan J W, . The Remarkable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 2001, 13(6): 479-486.

[37]

Wan B, Dong L L. Geology of Qiaoxiahala Fe-Cu-Au Deposit: A Paleozoic IOCG Deposit in Altaids, NW China. Acta Geologica Sinica: English Edition, 2014, 88(s2): 381-382.

[38]

Wan B, Hegner E, Zhang L, . Rb-Sr Geochronology of Chalcopyrite from the Chehugou Porphyry Mo-Cu Deposit (Northeast China) and Geochemical Constraints on the Origin of Hosting Granites. Economic Geology, 2009, 104(3): 351-363.

[39]

Wan B, Li S H, Xiao W J, . Where and When did the Paleo-Asian Ocean Form?. Precambrian Research, 2018, 317: 241-252.

[40]

Wan B, Xiao W J, Han C M, . Re-Os Molybdenite Age of the Cu-Mo Skarn Ore Deposit at Suoerkuduke in East Junggar, NW China and Its Geological Significance. Ore Geology Reviews, 2014, 56: 541-548.

[41]

Wan B, Xiao W J, Windley B F, . Contrasting Ore Styles and Their Role in Understanding the Evolution of the Altaids. Ore Geology Reviews, 2017, 80: 910-922.

[42]

Wan B, Xiao W J, Zhang L C, . Contrasting Styles of Mineralization in the Chinese Altai and East Junggar, NW China: Implications for the Accretionary History of the Southern Altaids. Journal of the Geological Society, 2011, 168(6): 1311-1321.

[43]

Wan B, Xiao W J, Zhang L C, . Iron Mineralization Associated with a Major Strike-Slip Shear Zone: Radiometric and Oxygen Isotope Evidence from the Mengku Deposit, NW China. Ore Geology Reviews, 2012, 44: 136-147.

[44]

Wan B, Zhang L C, Xiao W J. Geological and Geochemical Characteristics and Ore Genesis of the Keketale VMS Pb-Zn Deposit, Southern Altai Metallogenic Belt, NW China. Ore Geology Reviews, 2010, 37(2): 114-126.

[45]

Wang J B, Deng J N, Zhang J H, . Massive Sulphide Deposits Related to the Volcano-Passive Continental Margin in the Altay Region. Acta Geologica Sinica: English Edition, 1999, 73(3): 253-263.

[46]

Wang Z H, Sun S, Li J L, . Paleozoic Tectonic Evolution of the Northern Xinjiang, China: Geochemical and Geochronological Constraints from the Ophiolites. Tectonics, 2003, 22 2 1014

[47]

Williams P J, Barton M D, Johnson D A, . Hedenquist J W, Thompson J F H, Goldfarb R J, . Iron Oxide Copper-Gold Deposits: Geology, Space-Time Distribution, and Possible Modes of Origin. Economic Geology 100th Anniversary Volume, 2005, Littleton, CO: Society of Economic Geologists, 371-405.

[48]

Xiang P, Zhang L, Wu H. Ages of the Zircons from Ore-Bearing Porphyries in II-III Ore Area of Kalaxianger Porphyry Copper Ore Belt in Qinghe, Xinjiang and Its Geological Significance. Acta Petrologica Sinica, 2009, 25(6): 1474-1483.

[49]

Xiao W J, Song D F, Windley B F, . Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science China Earth Sciences, 2020, 63(3): 329-361.

[50]

Xiao W J, Windley B F, Allen M B, . Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 2013, 23(4): 1316-1341.

[51]

Xiao W J, Windley B F, Yuan C, . Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 2009, 309(3): 221-270.

[52]

Yan S, Zhang Z, Wang Y, . REE Geochemistry of Qiaoxiahala Type Fe-Cu Deposits in Southern Margin of Altay Mountains, Xinjiang, and Its Geological Implications. Mineral Deposits, 2005, 24(1): 25-33.

[53]

Yang F Q, Chai F M, Zhang Z X, . Zircon U-Pb Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of Granitoids in the Yulekenhalasu Copper Ore District, Northern Junggar, China: Petrogenesis and Tectonic Implications. Lithos, 2014, 190/191: 85-103.

[54]

Yang F Q, Mao J W, Pirajno F, . A Review of the Geological Characteristics and Geodynamic Setting of Late Paleozoic Porphyry Copper Deposits in the Junggar Region, Xinjiang Uygur Autonomous Region, Northwest China. Journal of Asian Earth Sciences, 2012, 49: 80-98.

[55]

Ying L. Geology, Geochemistry and Discussion on the Origin of the Qiaoxiahala Fe-Cu-Au Deposit in Xinjiang, 2007, Beijing: Chinese Academy of Geological Sciences, 1-112.

[56]

Ying L, Wang D, Li J, . Comparisions between the Qiaoxiahala Fe-Cu-Au Deposit in Xinjiang and Other IOCG-Type Depoists. Geotectonica et Metallogenia, 2008, 32: 338-345.

[57]

Ying L, Wang D, Liang T, . Ore Genesis and Metallogenic Model of Qiaoxiahala Fe-Cu-Au Deposit in Xinjiang. Mineral Deposits, 2009, 28(2): 211-217.

[58]

Zang Z J, Dong L L, Liu W, . Garnet U-Pb and O Isotopic Determinations Reveal a Shear-Zone Induced Hydrothermal System. Scientific Reports, 2019, 9 1 10382

[59]

Zhang H, Shen X, Ma L, . Geochronology of the Fuyun adakite, north Xinjiang and its constraint to the initiation of the Paleo-Asian Ocean subduction. Acta Petrologica Sinica, 2008, 24(5): 1054-1058.

[60]

Zhang Y, Liang G, Qu X, . Evidence of U-Pb Age and Hf Isotope of Zircons for Early Paleozoic Magmatism in the Qiongheba Arc, East Junggar. Acta Petrologica Sinica, 2010, 26(8): 2389-2398.

[61]

Zhang Z, Yang F, Li C, . Rock-Forming and Ore-Forming Ages of Qiaoxiahala Fe-Cu-Au Deposit on Northern Margin of Junggar Basin, Xinjiang. Mineral Deposits, 2012, 31: 347-358.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/