Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting

Yang Huang, Hao Deng

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (2) : 223-236.

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (2) : 223-236. DOI: 10.1007/s12583-019-1278-x
Petrology, Geochemistry and Ore Deposits

Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting

Author information +
History +

Abstract

The chrome spinel (chromite) in mantle peridotites from ophiolites can shed light on the formation and evolution process of ophiolites. Podiform chromites were found in the Late Proterozoic Miaowan ophiolitic complex (MOC), Yangtze Craton. Due to the metamorphism and intense deformation, most chromite grains in the MOC peridotites show typical chemical zoning (core-rim texture). The values of major and trace elements largely vary from core to rim within chromite grains, indicating that the chromites have undergone strong alteration and element mobility. Major and trace elements in the core parts of chromites are used to infer the tectonic origins and evolution of mantle peridotites in the MOC. The chromites from the MOC peridotites have higher Cr# values and lower Ni and Ga contents with respect to those from Phanero-zoic mantle peridotites, indicating a higher degree of depletion. In-situ major and trace elements (e.g., Ga) characteristics of podiform chromites in the MOC show that chromites from both harzburgites and dunites have strong subduction-related signatures, indicating that the MOC has formed in a supra-subduction setting which is consistent with the geological and geochemical data presented in previous studies.

Keywords

podiform chromite / Miaowan ophiolitic complex / trace elements / Precambrian / Yangtze Craton

Cite this article

Download citation ▾
Yang Huang, Hao Deng. Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting. Journal of Earth Science, 2020, 31(2): 223‒236 https://doi.org/10.1007/s12583-019-1278-x

References

Ahmed A, Arai S. Unexpectedly High-PGE Chromitite from the Deeper Mantle Section of the Northern Oman Ophiolite and Its Tectonic Implications. Contributions to Mineralogy and Petrology, 2002, 143(3): 263-278.
CrossRef Google scholar
Ahmed A H, Arai S, Attia A K. Petrological Characteristics of Podiform Chromitites and Associated Peridotites of the Pan African Pro-terozoic Ophiolite Complexes of Egypt. Mineralium Deposita, 2001, 36(1): 72-84.
CrossRef Google scholar
Ahmed A H, Gharib M E, Arai S. Characterization of the Thermally Metamorphosed Mantle-Crust Transition Zone of the Neoprotero-zoic Ophiolite at Gebel Mudarjaj, South Eastern Desert, Egypt. Lithos, 2012, 142-143: 67-83.
CrossRef Google scholar
Arai S, Okamura H, Kadoshima K, . Chemical Characteristics of Chromian Spinel in Plutonic Rocks: Implications for Deep Magma Processes and Discrimination of Tectonic Setting. Island Arc, 2011, 20(1): 125-137.
CrossRef Google scholar
Arai S, Ahmed A H. Mondal S K, Griffin W L. Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic. Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time, 2018, Amsterdam: Elsevier Inc., 139-157
CrossRef Google scholar
Burkhard D J M. Accessory Chromium Spinels: Their Coexistence and Alteration in Serpentinites. Geochimica et Cosmochimica Acta, 1993, 57(6): 1297-1306.
CrossRef Google scholar
Chen K, Gao S, Wu Y B, . 2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 2013, 224: 472-490.
CrossRef Google scholar
Colás V, González-Jiménez J M, Griffin W L, . Fingerprints of Metamorphism in Chromite: New Insights from Minor and Trace Elements. Chemical Geology, 2014, 389: 137-152.
CrossRef Google scholar
Dare S A S, Pearce J A, McDonald I, . Tectonic Discrimination of Peridotites Using FO2-Cr# and Ga-Ti-FeIII Systematics in Chrome-Spinel. Chemical Geology, 2009, 261(3/4): 199-216.
CrossRef Google scholar
Deng H, Peng S B, Polat A, . Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings. Precambrian Research, 2017, 289: 75-94.
CrossRef Google scholar
Derbyshire E J, O’Driscoll B, Lenaz D, . Compositionally Heterogeneous Podiform Chromitite in the Shetland Ophiolite Complex (Scotland): Implications for Chromitite Petrogenesis and Late-Stage Alteration in the Upper Mantle Portion of a Supra-Subduction Zone Ophiolite. Lithos, 2013, 162-163: 279-300.
CrossRef Google scholar
Dick H J B, Bullen T. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76.
CrossRef Google scholar
Gahlan H A, Arai S. Genesis of Peculiarly Zoned Co, Zn and Mn-Rich Chromian Spinel in Serpentinite of Bou-Azzer Ophiolite, AntiAtlas, Morocco. Journal of Mineralogical and Petrological Sciences, 2007, 102(2): 69-85.
CrossRef Google scholar
Gao S, Ling W L, Qiu Y M, . Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cra-tonic Evolution and Redistribution of REE during Crustal Anatexis. Ge-ochimica et Cosmochimica Acta, 1999, 63(13/14): 2071-2088.
CrossRef Google scholar
Gervilla F, Padrón-Navarta J A, Kerestedjian T, . Formation of Ferrian Chromite in Podiform Chromitites from the Golyamo Ka-menyane Serpentinite, Eastern Rhodopes, SE Bulgaria: A Two-Stage Process. Contributions to Mineralogy and Petrology, 2012, 164(4): 643-657.
CrossRef Google scholar
González-Jiménez J M, Kerestedjian T, Proenza J A, . Meta-morphism on Chromite Ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria). Geologica Acta, 2009, 7(4): 413-429.
González-Jiménez J M, Augé T, Gervilla F, . Mineralogy and Geochemistry of Platinum-Rich Chromitites from the Mantle-Crust Transition Zone at Ouen Island, New Caledonia Ophiolite. The Canadian Mineralogist, 2011, 49(6): 1549-1569.
CrossRef Google scholar
González-Jiménez J M, Griffin W L, Proenza J A, . Chro-mitites in Ophiolites: How, Where, When, Why? Part II. The Crystallization of Chromitites. Lithos, 2014, 189: 140-158.
CrossRef Google scholar
Goodman R J. The Distribution of Ga and Rb in Coexisting Ground-mass and Phenocryst Phases of Some Basic Volcanic Rocks. Geochimica et Cosmochimica Acta, 1972, 36(3): 303-317.
CrossRef Google scholar
Grieco G, Merlini A, Cazzaniga A. The Tectonic Significance of PGM-Bearing Chromitites at the Ranomena Mine, Toamasina Chromite District, Madagascar. Ore Geology Reviews, 2012, 44: 70-81.
CrossRef Google scholar
Guo J L, Gao S, Wu Y B, . 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crus-tal Growth. Precambrian Research, 2014, 242: 82-95.
CrossRef Google scholar
Han Q S, Peng S B, Kusky T M, . A Paleoproterozoic Ophi-olitic Mélange, Yangtze Craton, South China: Evidence for Paleoprote-rozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 2017, 293: 13-38.
CrossRef Google scholar
Hu Z C, Zhang W, Liu Y, . “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 2014, 87(2): 1152-1157.
CrossRef Google scholar
Huang Y, Wang L, Kusky T, . High-Cr Chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China: Implications for Its Tectonic Environment of Formation. Lithos, 2017, 288-289: 35-54.
CrossRef Google scholar
Irvine T N. Chromian Spinel as a Petrogenetic Indicator: Part 1. Theory. Canadian Journal of Earth Sciences, 1965, 2(6): 648-672.
CrossRef Google scholar
Jiang X F, Peng S B, Polat A, . Geochemistry and Geochro-nology of Mylonitic Metasedimentary Rocks Associated with the Prote-rozoic Miaowan Ophiolite Complex, Yangtze Craton, China: Implications for Geodynamic Events. Precambrian Research, 2016, 279: 37-56.
CrossRef Google scholar
Jiang X F, Peng S B, Kusky T M, . Petrogenesis and Geotec-tonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 2018, 29(1): 93-102.
CrossRef Google scholar
Kamenetsky V S. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 2001, 42(4): 655-671.
CrossRef Google scholar
Kapsiotis A N. Alteration of Mélange-Hosted Chromitites from Ko-rydallos, Pindos Ophiolite Complex, Greece: Evidence for Modification by a Residual High-T Post-Magmatic Fluid. Acta Geologica Polonica, 2014, 64(4): 473-494.
CrossRef Google scholar
Kusky T M, Li J, Glass A, . Origin and Emplacement of Ar-chean Ophiolites of the Central Orogenic Belt, North China Craton. Developments in Precambrian Geology, 2004, 13: 223-274.
CrossRef Google scholar
Kusky T M, Polat A, Windley B F, . Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 2016, 162: 387-432.
CrossRef Google scholar
Li J H, Kusky T M, Huang X N. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes. GSA Today, 2002, 12(7): 4-11.
CrossRef Google scholar
Liipo J, Vuollo J, Nykänen V, . Chromites from the Early Pro-terozoic Outokumpu-Jormua Ophiolite Belt: A Comparison with Chro-mites from Mesozoic Ophiolites. Lithos, 1995, 36(1): 15-27.
CrossRef Google scholar
Liu Y S, Hu Z C, Gao S, . In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.
CrossRef Google scholar
Maibam B, Foley S, Luguet A, . Characterisation of Chromites, Chromite Hosted Inclusions of Silicates and Metal Alloys in Chromitites from the Indo-Myanmar Ophiolite Belt of Northeastern India. Ore Geology Reviews, 2017, 90: 260-273.
CrossRef Google scholar
Mellini M, Rumori C, Viti C. Hydrothermally Reset Magmatic Spinels in Retrograde Serpentinites: Formation of “Ferritchromit” Rims and Chlorite Aureoles. Contributions to Mineralogy and Petrology, 2005, 149(3): 266-275.
CrossRef Google scholar
Merlini A, Grieco G, Diella V. Ferritchromite and Chromian-Chlorite Formation in Melange-Hosted Kalkan Chromitite (Southern Urals, Russia). American Mineralogist, 2009, 94(10): 1459-1467.
CrossRef Google scholar
Mondal S K, Ripley E M, Li C S, . The Genesis of Archaean Chromitites from the Nuasahi and Sukinda Massifs in the Singhbhum Craton, India. Precambrian Research, 2006, 148(1/2): 45-66.
CrossRef Google scholar
Mukherjee R, Mondal S K, Rosing M T, . Compositional Variations in the Mesoarchean Chromites of the Nuggihalli Schist Belt, Western Dharwar Craton (India): Potential Parental Melts and Implications for Tectonic Setting. Contributions to Mineralogy and Petrology, 2010, 160(6): 865-885.
CrossRef Google scholar
Pagé P, Barnes S J. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Economic Geology, 2009, 104(7): 997-1018.
CrossRef Google scholar
Pagé P, Barnes S J, Bédard J H, . In-situ Determination of Os, Ir, and Ru in Chromites Formed from Komatiite, Tholeiite and Boninite Magmas: Implications for Chromite Control of Os, Ir and Ru during Partial Melting and Crystal Fractionation. Chemical Geology, 2012, 302-303: 3-15.
CrossRef Google scholar
Paktunc A D, Cabri L J. A Proton- and Electron-Microprobe Study of Gallium, Nickel and Zinc Distribution in Chromian Spinel. Lithos, 1995, 35(3/4): 261-282.
CrossRef Google scholar
Pal T, Bhattacharya A, Nagendran G, . Petrogenesis of Chro-mites from the Manipur Ophiolite Belt, NE India: Evidence for a Supra-Subduction Zone Setting Prior to Indo-Myanmar Collision. Mineralogy and Petrology, 2014, 108(5): 713-726.
CrossRef Google scholar
Peng S B, Li C, Kusky T M, . Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 2010, 29(1): 8-20.
Peng S B, Kusky T M, Jiang X F, . Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 2012, 21(2/3): 577-594.
CrossRef Google scholar
Proenza J A, Ortega-Gutiérrez F, Camprubı A, . Paleozoic Serpentinite-Enclosed Chromitites from Tehuitzingo (Acatlán Complex, Southern Mexico): A Petrological and Mineralogical Study. Journal of South American Earth Sciences, 2004, 16(8): 649-666.
CrossRef Google scholar
Rollinson H. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite: Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 2008, 156(3): 273-288.
CrossRef Google scholar
Rollinson H, Adetunji J, Yousif A A, . New Mössbauer Measurements of Fe3+/ΣFe in Chromites from the Mantle Section of the Oman Oph-iolite: Evidence for the Oxidation of the Sub-Oceanic Mantle. Mineralogical Magazine, 2012, 76(3): 579-596.
CrossRef Google scholar
Rui H C, Jiao J G, Xia M Z, . Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Miner-alogical and Geochemical Evidence. Journal of Earth Science, 2019, 30(3): 476-493.
CrossRef Google scholar
Scowen P A H, Roeder P L, Helz R T. Reequilibration of Chro-mite within Kilauea Iki Lava Lake, Hawaii. Contributions to Mineralogy and Petrology, 1991, 107(1): 8-20.
CrossRef Google scholar
Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallograph-ica Section A, 1976, 32(5): 751-767.
CrossRef Google scholar
Singh A K, Singh R B. Genetic Implications of Zn- And Mn-Rich Cr-Spinels in Serpentinites of the Tidding Suture Zone, Eastern Himalaya, NE India. Geological Journal, 2013, 48(1): 22-38.
CrossRef Google scholar
Stowe C W. Compositions and Tectonic Settings of Chromite Deposits through Time. Economic Geology and the Bulletin of the Society of Economic Geologists, 1994, 89(3): 528-546.
CrossRef Google scholar
Su B X, Zhou M F, Jing J J, . Distinctive Melt Activity and Chromite Mineralization in Luobusa and Purang Ophiolites, Southern Tibet: Constraints from Trace Element Compositions of Chromite and Olivine. Science Bulletin, 2019, 64(2): 108-121.
CrossRef Google scholar
Thayer T P. Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey. Economic Geology, 1964, 59(8): 1497-1524.
CrossRef Google scholar
Vuollo J, Liipo J, Nykanen V, . An Early Proterozoic Podiform Chromitite in the Outokumpu Ophiolite Complex, Finland. Economic Geology, 1995, 90(2): 445-452.
CrossRef Google scholar
Wang J P, Kusky T M, Polat A, . Sea-Floor Metamorphism Recorded in Epidosites from the ca. 1.0 Ga Miaowan Ophiolite, Huangling Anticline, China. Journal of Earth Science, 2012, 23(5): 696-704.
CrossRef Google scholar
Xiong F H, Yang J S, Robinson P T, . Petrology and Geochemistry of High Cr# Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Ore Geology Reviews, 2015, 70: 188-207.
CrossRef Google scholar
Xiong Q, Henry H, Griffin W L, . High- and Low-Cr Chro-mitite and Dunite in a Tibetan Ophiolite: Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 2017, 172 6 45
CrossRef Google scholar
Yu H, Zhang H F, Zou H B, . Minor and Trace Element Variations in Chromite from the Songshugou Dunites, North Qinling Orogen: Evidence for Amphibolite-Facies Metamorphism. Lithos, 2019, 328-329: 146-158.
CrossRef Google scholar
Zhou M F, Robinson P T, Su B X, . Compositions of Chro-mite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 2014, 26(1): 262-283.
CrossRef Google scholar
Zhou M F, Robinson P T, Malpas J, . Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 1996, 37(1): 3-21.
CrossRef Google scholar
Zong K Q, Klemd R, Yuan Y, . The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Met-amorphism and Continental Arc Formation in the Southern Beishan Oro-gen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 2017, 290: 32-48.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/