Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting

Yang Huang , Hao Deng

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (2) : 223 -236.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (2) : 223 -236. DOI: 10.1007/s12583-019-1278-x
Petrology, Geochemistry and Ore Deposits

Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting

Author information +
History +
PDF

Abstract

The chrome spinel (chromite) in mantle peridotites from ophiolites can shed light on the formation and evolution process of ophiolites. Podiform chromites were found in the Late Proterozoic Miaowan ophiolitic complex (MOC), Yangtze Craton. Due to the metamorphism and intense deformation, most chromite grains in the MOC peridotites show typical chemical zoning (core-rim texture). The values of major and trace elements largely vary from core to rim within chromite grains, indicating that the chromites have undergone strong alteration and element mobility. Major and trace elements in the core parts of chromites are used to infer the tectonic origins and evolution of mantle peridotites in the MOC. The chromites from the MOC peridotites have higher Cr# values and lower Ni and Ga contents with respect to those from Phanero-zoic mantle peridotites, indicating a higher degree of depletion. In-situ major and trace elements (e.g., Ga) characteristics of podiform chromites in the MOC show that chromites from both harzburgites and dunites have strong subduction-related signatures, indicating that the MOC has formed in a supra-subduction setting which is consistent with the geological and geochemical data presented in previous studies.

Keywords

podiform chromite / Miaowan ophiolitic complex / trace elements / Precambrian / Yangtze Craton

Cite this article

Download citation ▾
Yang Huang, Hao Deng. Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting. Journal of Earth Science, 2020, 31(2): 223-236 DOI:10.1007/s12583-019-1278-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed A, Arai S. Unexpectedly High-PGE Chromitite from the Deeper Mantle Section of the Northern Oman Ophiolite and Its Tectonic Implications. Contributions to Mineralogy and Petrology, 2002, 143(3): 263-278.

[2]

Ahmed A H, Arai S, Attia A K. Petrological Characteristics of Podiform Chromitites and Associated Peridotites of the Pan African Pro-terozoic Ophiolite Complexes of Egypt. Mineralium Deposita, 2001, 36(1): 72-84.

[3]

Ahmed A H, Gharib M E, Arai S. Characterization of the Thermally Metamorphosed Mantle-Crust Transition Zone of the Neoprotero-zoic Ophiolite at Gebel Mudarjaj, South Eastern Desert, Egypt. Lithos, 2012, 142-143: 67-83.

[4]

Arai S, Okamura H, Kadoshima K, . Chemical Characteristics of Chromian Spinel in Plutonic Rocks: Implications for Deep Magma Processes and Discrimination of Tectonic Setting. Island Arc, 2011, 20(1): 125-137.

[5]

Arai S, Ahmed A H. Mondal S K, Griffin W L. Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic. Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time, 2018, Amsterdam: Elsevier Inc., 139-157

[6]

Burkhard D J M. Accessory Chromium Spinels: Their Coexistence and Alteration in Serpentinites. Geochimica et Cosmochimica Acta, 1993, 57(6): 1297-1306.

[7]

Chen K, Gao S, Wu Y B, . 2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 2013, 224: 472-490.

[8]

Colás V, González-Jiménez J M, Griffin W L, . Fingerprints of Metamorphism in Chromite: New Insights from Minor and Trace Elements. Chemical Geology, 2014, 389: 137-152.

[9]

Dare S A S, Pearce J A, McDonald I, . Tectonic Discrimination of Peridotites Using FO2-Cr# and Ga-Ti-FeIII Systematics in Chrome-Spinel. Chemical Geology, 2009, 261(3/4): 199-216.

[10]

Deng H, Peng S B, Polat A, . Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings. Precambrian Research, 2017, 289: 75-94.

[11]

Derbyshire E J, O’Driscoll B, Lenaz D, . Compositionally Heterogeneous Podiform Chromitite in the Shetland Ophiolite Complex (Scotland): Implications for Chromitite Petrogenesis and Late-Stage Alteration in the Upper Mantle Portion of a Supra-Subduction Zone Ophiolite. Lithos, 2013, 162-163: 279-300.

[12]

Dick H J B, Bullen T. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76.

[13]

Gahlan H A, Arai S. Genesis of Peculiarly Zoned Co, Zn and Mn-Rich Chromian Spinel in Serpentinite of Bou-Azzer Ophiolite, AntiAtlas, Morocco. Journal of Mineralogical and Petrological Sciences, 2007, 102(2): 69-85.

[14]

Gao S, Ling W L, Qiu Y M, . Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cra-tonic Evolution and Redistribution of REE during Crustal Anatexis. Ge-ochimica et Cosmochimica Acta, 1999, 63(13/14): 2071-2088.

[15]

Gervilla F, Padrón-Navarta J A, Kerestedjian T, . Formation of Ferrian Chromite in Podiform Chromitites from the Golyamo Ka-menyane Serpentinite, Eastern Rhodopes, SE Bulgaria: A Two-Stage Process. Contributions to Mineralogy and Petrology, 2012, 164(4): 643-657.

[16]

González-Jiménez J M, Kerestedjian T, Proenza J A, . Meta-morphism on Chromite Ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria). Geologica Acta, 2009, 7(4): 413-429.

[17]

González-Jiménez J M, Augé T, Gervilla F, . Mineralogy and Geochemistry of Platinum-Rich Chromitites from the Mantle-Crust Transition Zone at Ouen Island, New Caledonia Ophiolite. The Canadian Mineralogist, 2011, 49(6): 1549-1569.

[18]

González-Jiménez J M, Griffin W L, Proenza J A, . Chro-mitites in Ophiolites: How, Where, When, Why? Part II. The Crystallization of Chromitites. Lithos, 2014, 189: 140-158.

[19]

Goodman R J. The Distribution of Ga and Rb in Coexisting Ground-mass and Phenocryst Phases of Some Basic Volcanic Rocks. Geochimica et Cosmochimica Acta, 1972, 36(3): 303-317.

[20]

Grieco G, Merlini A, Cazzaniga A. The Tectonic Significance of PGM-Bearing Chromitites at the Ranomena Mine, Toamasina Chromite District, Madagascar. Ore Geology Reviews, 2012, 44: 70-81.

[21]

Guo J L, Gao S, Wu Y B, . 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crus-tal Growth. Precambrian Research, 2014, 242: 82-95.

[22]

Han Q S, Peng S B, Kusky T M, . A Paleoproterozoic Ophi-olitic Mélange, Yangtze Craton, South China: Evidence for Paleoprote-rozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 2017, 293: 13-38.

[23]

Hu Z C, Zhang W, Liu Y, . “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 2014, 87(2): 1152-1157.

[24]

Huang Y, Wang L, Kusky T, . High-Cr Chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China: Implications for Its Tectonic Environment of Formation. Lithos, 2017, 288-289: 35-54.

[25]

Irvine T N. Chromian Spinel as a Petrogenetic Indicator: Part 1. Theory. Canadian Journal of Earth Sciences, 1965, 2(6): 648-672.

[26]

Jiang X F, Peng S B, Polat A, . Geochemistry and Geochro-nology of Mylonitic Metasedimentary Rocks Associated with the Prote-rozoic Miaowan Ophiolite Complex, Yangtze Craton, China: Implications for Geodynamic Events. Precambrian Research, 2016, 279: 37-56.

[27]

Jiang X F, Peng S B, Kusky T M, . Petrogenesis and Geotec-tonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 2018, 29(1): 93-102.

[28]

Kamenetsky V S. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 2001, 42(4): 655-671.

[29]

Kapsiotis A N. Alteration of Mélange-Hosted Chromitites from Ko-rydallos, Pindos Ophiolite Complex, Greece: Evidence for Modification by a Residual High-T Post-Magmatic Fluid. Acta Geologica Polonica, 2014, 64(4): 473-494.

[30]

Kusky T M, Li J, Glass A, . Origin and Emplacement of Ar-chean Ophiolites of the Central Orogenic Belt, North China Craton. Developments in Precambrian Geology, 2004, 13: 223-274.

[31]

Kusky T M, Polat A, Windley B F, . Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 2016, 162: 387-432.

[32]

Li J H, Kusky T M, Huang X N. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes. GSA Today, 2002, 12(7): 4-11.

[33]

Liipo J, Vuollo J, Nykänen V, . Chromites from the Early Pro-terozoic Outokumpu-Jormua Ophiolite Belt: A Comparison with Chro-mites from Mesozoic Ophiolites. Lithos, 1995, 36(1): 15-27.

[34]

Liu Y S, Hu Z C, Gao S, . In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.

[35]

Maibam B, Foley S, Luguet A, . Characterisation of Chromites, Chromite Hosted Inclusions of Silicates and Metal Alloys in Chromitites from the Indo-Myanmar Ophiolite Belt of Northeastern India. Ore Geology Reviews, 2017, 90: 260-273.

[36]

Mellini M, Rumori C, Viti C. Hydrothermally Reset Magmatic Spinels in Retrograde Serpentinites: Formation of “Ferritchromit” Rims and Chlorite Aureoles. Contributions to Mineralogy and Petrology, 2005, 149(3): 266-275.

[37]

Merlini A, Grieco G, Diella V. Ferritchromite and Chromian-Chlorite Formation in Melange-Hosted Kalkan Chromitite (Southern Urals, Russia). American Mineralogist, 2009, 94(10): 1459-1467.

[38]

Mondal S K, Ripley E M, Li C S, . The Genesis of Archaean Chromitites from the Nuasahi and Sukinda Massifs in the Singhbhum Craton, India. Precambrian Research, 2006, 148(1/2): 45-66.

[39]

Mukherjee R, Mondal S K, Rosing M T, . Compositional Variations in the Mesoarchean Chromites of the Nuggihalli Schist Belt, Western Dharwar Craton (India): Potential Parental Melts and Implications for Tectonic Setting. Contributions to Mineralogy and Petrology, 2010, 160(6): 865-885.

[40]

Pagé P, Barnes S J. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Economic Geology, 2009, 104(7): 997-1018.

[41]

Pagé P, Barnes S J, Bédard J H, . In-situ Determination of Os, Ir, and Ru in Chromites Formed from Komatiite, Tholeiite and Boninite Magmas: Implications for Chromite Control of Os, Ir and Ru during Partial Melting and Crystal Fractionation. Chemical Geology, 2012, 302-303: 3-15.

[42]

Paktunc A D, Cabri L J. A Proton- and Electron-Microprobe Study of Gallium, Nickel and Zinc Distribution in Chromian Spinel. Lithos, 1995, 35(3/4): 261-282.

[43]

Pal T, Bhattacharya A, Nagendran G, . Petrogenesis of Chro-mites from the Manipur Ophiolite Belt, NE India: Evidence for a Supra-Subduction Zone Setting Prior to Indo-Myanmar Collision. Mineralogy and Petrology, 2014, 108(5): 713-726.

[44]

Peng S B, Li C, Kusky T M, . Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 2010, 29(1): 8-20.

[45]

Peng S B, Kusky T M, Jiang X F, . Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 2012, 21(2/3): 577-594.

[46]

Proenza J A, Ortega-Gutiérrez F, Camprubı A, . Paleozoic Serpentinite-Enclosed Chromitites from Tehuitzingo (Acatlán Complex, Southern Mexico): A Petrological and Mineralogical Study. Journal of South American Earth Sciences, 2004, 16(8): 649-666.

[47]

Rollinson H. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite: Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 2008, 156(3): 273-288.

[48]

Rollinson H, Adetunji J, Yousif A A, . New Mössbauer Measurements of Fe3+/ΣFe in Chromites from the Mantle Section of the Oman Oph-iolite: Evidence for the Oxidation of the Sub-Oceanic Mantle. Mineralogical Magazine, 2012, 76(3): 579-596.

[49]

Rui H C, Jiao J G, Xia M Z, . Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Miner-alogical and Geochemical Evidence. Journal of Earth Science, 2019, 30(3): 476-493.

[50]

Scowen P A H, Roeder P L, Helz R T. Reequilibration of Chro-mite within Kilauea Iki Lava Lake, Hawaii. Contributions to Mineralogy and Petrology, 1991, 107(1): 8-20.

[51]

Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallograph-ica Section A, 1976, 32(5): 751-767.

[52]

Singh A K, Singh R B. Genetic Implications of Zn- And Mn-Rich Cr-Spinels in Serpentinites of the Tidding Suture Zone, Eastern Himalaya, NE India. Geological Journal, 2013, 48(1): 22-38.

[53]

Stowe C W. Compositions and Tectonic Settings of Chromite Deposits through Time. Economic Geology and the Bulletin of the Society of Economic Geologists, 1994, 89(3): 528-546.

[54]

Su B X, Zhou M F, Jing J J, . Distinctive Melt Activity and Chromite Mineralization in Luobusa and Purang Ophiolites, Southern Tibet: Constraints from Trace Element Compositions of Chromite and Olivine. Science Bulletin, 2019, 64(2): 108-121.

[55]

Thayer T P. Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey. Economic Geology, 1964, 59(8): 1497-1524.

[56]

Vuollo J, Liipo J, Nykanen V, . An Early Proterozoic Podiform Chromitite in the Outokumpu Ophiolite Complex, Finland. Economic Geology, 1995, 90(2): 445-452.

[57]

Wang J P, Kusky T M, Polat A, . Sea-Floor Metamorphism Recorded in Epidosites from the ca. 1.0 Ga Miaowan Ophiolite, Huangling Anticline, China. Journal of Earth Science, 2012, 23(5): 696-704.

[58]

Xiong F H, Yang J S, Robinson P T, . Petrology and Geochemistry of High Cr# Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Ore Geology Reviews, 2015, 70: 188-207.

[59]

Xiong Q, Henry H, Griffin W L, . High- and Low-Cr Chro-mitite and Dunite in a Tibetan Ophiolite: Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 2017, 172 6 45

[60]

Yu H, Zhang H F, Zou H B, . Minor and Trace Element Variations in Chromite from the Songshugou Dunites, North Qinling Orogen: Evidence for Amphibolite-Facies Metamorphism. Lithos, 2019, 328-329: 146-158.

[61]

Zhou M F, Robinson P T, Su B X, . Compositions of Chro-mite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 2014, 26(1): 262-283.

[62]

Zhou M F, Robinson P T, Malpas J, . Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 1996, 37(1): 3-21.

[63]

Zong K Q, Klemd R, Yuan Y, . The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Met-amorphism and Continental Arc Formation in the Southern Beishan Oro-gen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 2017, 290: 32-48.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/