Fluid Inclusion Characteristics of Tungsten Mineralization in the Agargaon Area of Sakoli Fold Belt, Central India

Girish Kumar Mayachar , Subhasish Ghosh

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 559 -570.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 559 -570. DOI: 10.1007/s12583-019-1271-4
Mineral Deposits

Fluid Inclusion Characteristics of Tungsten Mineralization in the Agargaon Area of Sakoli Fold Belt, Central India

Author information +
History +
PDF

Abstract

The Lower to Middle Proterozoic Sakoli fold belt in Central India forms a triangular belt with significant mineralization of strategic minerals. The Sakoli fold belt comprises metasediments, felsic and mafic volcanics with metabasalts bounded by the gneissic-migmatitic terrain. The last pulses of granitic activity in the form of quartz lenses intrude the metasediments and are associated with tungsten mineralization. The metasediments are intruded by the quartz veins and tourmaline breccias trending 60°N to 65°E and 60°S to 65°W and are parallel to the regional structural foliations. The tungsten mineralization in this area is restricted to tourmaline-quartz mica greisens and quartz veins. The NE-SW trending foliated contact zones of chlorite mica schist and porphyritic granite/gneisses have served as easy channels for the mineralizing vapours and solutions to percolate, which formed ore bearing greisens and quartz veins. This mineralization is erratic and manifested by sparse and sporadic disseminations of wolframite and scheelite associated with minor amount of molybdenite and chalcopyrite. The fluid inclusion microthermometry on mineralized quartz veins and quartz-tourmaline veins reveals the existence of a metamorphogenic aqueous- gaseous (H2O-CO2+NaCl) fluid that underwent phase separation and gave rise to gaseous (CO2) inclusion. The salinity of tungsten mineralizations varies from low to high (1.32 wt.% to 40.44 wt.% NaCl eq.). The estimated P-T range of tungsten mineralization varies from 1.2 to 2.2 kbar at 280 to 390 °C. Raman spectroscopy reveals that the fluid inclusions mainly contain H2O and CO2 with rarely H2S and CH4. Stable isotopic data reveal that the sulfur isotope fractions from the deposits δ34S ranging from +3.1‰ to +3.35‰, suggesting the deep crustal source for the sulfur, which can be further interpreted as a single (magmatic) supply of sulfur during magmatic-hydrothermal mineralization. The studies reveal the presence of chlorides such as FeCl2/MgCl2 and CaCl2, indicating the involvement of chloride complexes in transportation of tungsten to the fluid system and the evolution of the ore-forming fluids by mixing or immiscibility of high-temperature, high-salinity magmatic fluids and low-temperature, low-salinity fluids in hydrothermal system, and also representing magmatic-hydrothermal interactions contributed wolframite and scheelite with minor amount of molybdenite and chalcopyrite.

Keywords

Sakoli fold belt / fluid inclusions / tungsten

Cite this article

Download citation ▾
Girish Kumar Mayachar, Subhasish Ghosh. Fluid Inclusion Characteristics of Tungsten Mineralization in the Agargaon Area of Sakoli Fold Belt, Central India. Journal of Earth Science, 2020, 31(3): 559-570 DOI:10.1007/s12583-019-1271-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Archer D G. Thermodynamic Properties of the NaCl+H2O System. II. Thermodynamic Properties of NaCl(aq), NaCl·2H2(cr), and Phase Equilibria. Journal of Physical and Chemical Reference Data, 1992, 21(4): 793-829.

[2]

Bakker R J. Package FLUIDS 1. Computer Programs for Analysis of Fluid Inclusion Data and for Modelling Bulk Fluid Properties. Chemical Geology, 2003, 194(1/2/3): 3-23.

[3]

Bandyopadhyay B K. Sarkar S C. Sedex Type Copper and Zinc Deposits in the Proterozoic Sakoli Group, Nagpur and Bhandara Districts, Central India. Metallogeny Related to Tectonics of the Pro-terozoic Mobile Belts, 1992, Rotterdam: A. A. Balkema, 53-101.

[4]

Beaudoin G, Taylor B E, Rumble D III, . Variations in the Sulfur Isotope Composition of Troilite from the Cañon Diablo Iron Meteorite. Geochimica et Cosmochimica Acta, 1994, 58(19): 4253-4255.

[5]

Bhoskar K G. Genetic Modeling in Relation to the Geochemical Parameters of Distribution of Tungsten and Associated Metals in Submarine Basic Volcanic Domain—A Case History of Ranbori-Bhaonri Prospects. Gondwana Geological Magzine, 1998, 13(2): 13-21.

[6]

Bhoskar K G, Choudhury A, Padhi R N. Conceptual Modeling of Tungsten Mineralization in the Sakoli Basin, Central India. Recent Researches in Geology, 2004, 17: 108-119. In: Rai, K. L., Patel, S. C., eds., Precambrian Crustal Evolution and Metallogenesis with Special References to Central India

[7]

Bhoskar K G, Roy A, Saha A K. Crustal Evolution and Ore Genesis—The Central Indian Scenario. Geol. Surv. Ind. Spl. Pub., 2001, 64: 199-207.

[8]

Bodnar R J. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684.

[9]

Bodnar R J. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 1983, 78(3): 535-542.

[10]

Bodnar R J, Binns P R, Hall D L. Synthetic Fluid Inclusions-VI. Quantitative Evaluation of the Decrepitation Behaviour of Fluid Inclusions in Quartz at One Atmosphere Confining Pressure. Journal of Metamorphic Geology, 1989, 7(2): 229-242.

[11]

Brown P E, Lamb W M. P-V-T Properties of Fluids in the System H2O±CO2±NaCl: New Graphical Presentations and Implications for Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 1989, 53(6): 1209-1221.

[12]

Chi G X, Lu H Z. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 2008, 24: 1945-1953. (in Chinese with English Abstract)

[13]

Collins P L F. Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity. Economic Geology, 1979, 74(6): 1435-1444.

[14]

de Groot P A. Handbook of Stable Isotope Analytical Techniques, 2004, Amsterdam: Elsevier, 1234 Vol. 1

[15]

de Groot P A. Handbook of Stable Isotope Analytical Techniques, 2009, Amsterdam: Elsevier, 1372 Vol. 2

[16]

Dekate Y G. Tungsten Occurrences in India and Their Genesis. Economic Geology, 1967, 62(4): 556-561.

[17]

Duan Z H, Møller N, Weare J H. An Equation of State for the CH4-CO2-H2O System: II. Mixtures from 50 to 1 000 °C and 0 to 1 000 bar. Geochimica et Cosmochimica Acta, 1992, 56(7): 2619-2631.

[18]

Èernø P, Blevin P L, Cuney M, . Hedenquist J W, Thompson J F H, Goldfarb R J, . Granite-Related Ore Deposits. Granite-Related Ore Deposits, 2005, Bodmin: MPG Books Ltd., 337-370.

[19]

Eugster H P. Granites and Hydrothermal Ore Deposits: A Geo-chemical Framework. Mineralogical Magazine, 1985, 49(350): 7-23.

[20]

Fermor L L. Note on Occurrence of Wolfram in the Nagpur District, Central Provinces. Rec. Geol. Sury. India, 1908, 36(4): 301-311.

[21]

Goldstein, R. H., 2003. Petrographic Analysis of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions Analysis and Interpretation, Short Course Series, Vol. 32. Mineralogical Association of Canada. 9–53

[22]

Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course 31, Soc. Sediment. Geol. 199

[23]

Heinrich C A. The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition. Economic Geology, 1990, 85(3): 457-481.

[24]

Hoefs J. Stable Isotope Geochemistry, 2009, Berlin: Springer-Verlag, 288.

[25]

Jaireth S, Heinrich C A, Solomon M. Chemical Controls on Hydrothermal Tungsten Transport in Some Magmatic Systems and the Precipitation of Ferberite and Scheelite. Geol. Soc. Australia Abs., 1990, 25: 269-270.

[26]

Lokras K V, Gajbhiye N G, Raju A V. Agargaon Tungsten Deposit, Nagpur District, Maharastra. GSI Bulletin, 1981, 42 83.

[27]

Lu H Z, Fan H R, Ni P, . Fluid Inclusions, 2004, Beijing: Science Press, 406-419.

[28]

Marini L, Chiappini V, Cioni R, . Effect of Degassing on Sulfur Contents and δ34S Values in Somma-Vesuvius Magmas. Bulletin of Volca-nology, 1998, 60(3): 187-194.

[29]

Mohan M, Bhoskar K G. Tungsten Metallogeny Related to Acid Magmatism in the Sakoli Group, Central India. Geol. Surv. Ind. Spl. Pub., 1990, 28: 648-657.

[30]

Narsimhan D, Rao N K, Panchapakesan V, . Tungsten Mineralisation at Khobna, Maharashtra: Fluid Inclusion Studies. J. Geol. Sco. Ind., 1997, 50: 343-346.

[31]

Ohmoto H, Rye R O. Barnes H L. Isotopes of Sulfur and Carbon. Geochemistry of Hydrothermal Ore Deposits, 1979, New York: John Wiley and Sons, 509-567.

[32]

Pophare A M, Varade A M, Kanojkar D M, . Ore Genetic Modeling of Tungsten Mineralisation in Kuhi-Khobana-Agargaon Belt, Nagpur District, Maharashtra. Journal of Applied Geochemistry, 2006, 8(2A): 430-440.

[33]

Pouchou J L, Pichoir F. A New Model for Quantitative X-Ray Microanalyses, Part I: Application to the Analyses of Homogenous Samples. Recherche Aerospatiale, 1984, V(3): 13-36.

[34]

Raychaudhury J K, Das M. Base Metal Mineralisation in the Sakoli Metamporphites in Parts of Nagpur-Bhandara Districts, Maharashtra. Geol. Sruv. Ind. Spl. Pub., 1981, 3: 227-237.

[35]

Roedder E. Fluid Inclusions. Reviews in Mineralogy, 1984, 12 644.

[36]

Roy, A. K., Charles Mony, P. C. D., Saha, A. K., 1994. Geology of the Sakoli Fold Belt, Nagpur, Bhandara and Gadchiroli Districts, Maharashtra, Central India. Geological Survey of India, Rep. Nagpur for the F. S. 1988–1994

[37]

Roy, A., Charles Mony, P. C. D., Saha, S. K., 1996. Geology of the Sakoli Fold Belt, Nagpur, Bhandara, and Gadchiroli Districts, Maharashtra, Central India. Geological Survey of India, Rep. Nagpur for the F. S. 1988–1994

[38]

Saha A K, Chattopadhyay S, Kanhu C M, . Polymetallic Mineralisation in Sakoli Fold Belt Their Genetic Modeling Using Fluid Inclusion and Sulfur Isotope Data. Geol. Surv. Ind. Spl. Pub., 2001, 64: 307-398.

[39]

Seetharam R. Ore Mineralogy of the Khobna Tungsten Prospect, Nagpur District, Maharashtra. GSI Special Publication, 1990, 28: 599-617.

[40]

Sengupta K K. Note on the Occurrence of Scheelite near Agargaon. Quart. Jour. Geol. Min. Met. Soc. Ind., 1941, 13: 179-189.

[41]

Shepherd T J, Rankin A H, Alderton D H M. A Practical Guide to Fluid Inclusion Studies, 1985, Glasgow, London: Blackie, 239.

[42]

Thiery R, Vidal J, Dubessy J. Phase Equilibria Modelling Applied to Fluid Inclusions: Liquid-Vapour Equilibria and Calculation of the Molar Volume in the CO2-CH4-N2 System. Geochimica et Cosmochimica Acta, 1994, 58(3): 1073-1082.

[43]

Touret J L R. Fluids in Metamorphic Rocks. Lithos, 2001, 55(1/2/3/4): 1-25.

[44]

van den Kerkhof A M. Phase Transitions and Molar Volumes of CO2-CH4-N2 Inclusions. Bulletin de Minéralogie, 1988, 111(3): 257-266.

[45]

Wang X D, Ni P, Yuan S D, . Fluid Inclusion Studies of the Huangsha Quartz-Vein Type Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 2012, 28: 122-132. (in Chinese with English Abstract)

[46]

Zhang Y G, Frantz J D. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl-KCl-CaCl2-H2O Using Synthetic Fluid Inclusions. Chemical Geology, 1987, 64(3/4): 335-350.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/