Orogenic Movements during the Paleozoic Period: Development of the Granitoid Formations in the Northwestern Region of Spain’s Iberian Peninsula

Juan Ramon Vidal Romaní , Zhaojun Song , Huimin Liu , Yifang Sun , Haonan Li

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 611 -620.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 611 -620. DOI: 10.1007/s12583-019-1268-z
Structural Geology and Geomorphology

Orogenic Movements during the Paleozoic Period: Development of the Granitoid Formations in the Northwestern Region of Spain’s Iberian Peninsula

Author information +
History +
PDF

Abstract

In the present study, Paleozoic Variscan orogenesis was a model of the oroclinal flexion accompanied by extensive magmatism, which could be divided into the following two types: post-tectonic and syn-tectonic tonalite granite, and leuco-granite which were controlled by the tectonic characteristics of the intrusions. It was observed that a very high majority of the samples had displayed discontinuities in their structures, that were later utilized to define the granitoid morphology and development characteristics of the rock during the intrusion phases. Furthermore, it was determined that the tectonics associated with the Alpine orogeny results in the new generation of faults and fractures during the Paleogene Period had produced the development of the Sierras. Due to different weathering processes, the depressions which had resulted in the present granitoid reliefs were found to be exclusively related to the structural development processes during the geological history (either tectonic or magmatic) of the granite, and not as normally interpreted.

Keywords

granitoid / geomorphology / endogenous forms / exogenous forms / intrusive structures

Cite this article

Download citation ▾
Juan Ramon Vidal Romaní, Zhaojun Song, Huimin Liu, Yifang Sun, Haonan Li. Orogenic Movements during the Paleozoic Period: Development of the Granitoid Formations in the Northwestern Region of Spain’s Iberian Peninsula. Journal of Earth Science, 2020, 31(3): 611-620 DOI:10.1007/s12583-019-1268-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed H A, Ma C Q, Wang L X, . Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China. Journal of Earth Science, 2018, 29(5): 1181-1202.

[2]

Auréjac J B, Gleizes G, Diot H, . Le Complexe Granitique de Quérigut (Pyrénées, France) Ré-examiné par la Technique de l’Asmun Pluton Syntectonique de la Transpression Dextre Hercynienne. Bulletin Societé Géologique de France, 2004, 175(2): 157-174. in Spanish)

[3]

Badgley P. Structural Tectonic Principles, 1965, New York: Harper’s Geoscience Series

[4]

Bensimon D, Kadanoff L P, Liang S D, . Viscous Flows in Two Dimensions. Reviews of Modern Physics, 1986, 58(4): 977-999.

[5]

Bremer, H., Jennings, J. N., 1978. Inselbergs/Inselberge. Zeitschrift für Geomorphologie Supplement Band. 31 (in Spanish)

[6]

Brook G A. A New Approach to the Study of Inselberg Landscapes. Zeitschrift für Geomorphologie, 1978, 31: 138-160. (in Spanish)

[7]

Büdel J. Klima-Geomorphologie, 1977, Berlin: Borntraeger, 304.

[8]

Burton Johnson A, Macpherson C G, Muraszko J R, . Tectonic Strain Recorded by Magnetic Fabrics (AMS) in Plutons, Including Mt Kinabalu, Borneo: A Tool to Explore Past Tectonic Regimes and Syn-Magmatic Deformation. Journal of Structural Geology, 2019, 119: 50-60.

[9]

Cashman K V, Sparks R S J, Blundy J D. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 2017, 355 6331 eaag3055

[10]

Cloos H. Das Batholitenproblem. Fortschrift der Geologie und Palaeontologie, 1923, 1: 1-8. (in Spanish)

[11]

Cloos H. Zur Experimentellen Tektonik. Die Naturwissenschaften, 1931, 19(11): 242-247.

[12]

Corretgé L G, Gallastegui G, Cuesta A. Rheologia y Procesos Fí sicos de Transporte de Magma en el Pasillo de Enclaves de Cangas de Morrazo-Moaña. Trabajos de Geología, 1984, 14: 17-26. (in Spanish)

[13]

Diot H, Bouchez J L, Boutaleb M, . Le Granite d’Oulmès (Maroc Central): Structure de l’état Magmatic à l’état Solide et Modèle de Mise en Place. Bulletin de la Société Geologique de France, 1987, 3(1): 157-168. in French)

[14]

Fuenlabrada Pérez, J. M., 2018. Geoquímica de Series Metasedimentarias del Macizo Ibérico: Contexto Dinámico de la Transición Ediacarense-Cámbrico. Serie Nova Terra No. 49. ISBN: 978-84-9749-690-2 (in Spanish)

[15]

Ganne J, Feng X J. Magmatism: A Crustal and Geodynamic Perspective. Journal of Structural Geology, 2018, 114: 329-335.

[16]

Glazner A F, Bartley J M, Coleman D S, . Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers?. GSA Today, 2004, 14(4): 4-5.

[17]

Godard A. Pays et Paysages du Granite, 1977, Paris: Presses Universitaires de France (in Spanish)

[18]

Gutiérrez E M. Shroder J F Jr. Climatic Geomorpholoy. Development in Earth Surface Processes, 8, 2005, Amsterdam: Elsevier Pub. Company, 753.

[19]

Han Y G, Wang Y, Zhao G C, . Syn-Tectonic Emplacement of the Late Mesozoic Laojunshan Granite Pluton in the Eastern Qinling, Central China: An Integrated Fabric and Geochronologic Study. Journal of Structural Geology, 2014, 68: 1-15.

[20]

He X H, Zhong H, Zhao Z F, . U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling. Journal of Earth Science, 2018, 29(4): 920-938.

[21]

Li J, Jin A W, Hou G T. Timing and Implications for the Late Mesozoic Geodynamic Settings of Eastern North China Craton: Evidences from K-Ar Dating Age and Sedimentary-Structural Characteristics Records of Lingshan Island, Shandong Province. Journal of Earth System Science, 2017, 126(8): 1-14.

[22]

Liang S D. Random-Walk Simulations of Flow in Hele Shaw Cells. Physical Review A, 1986, 33(4): 2663-2674.

[23]

Liang S D. Viscous Flows in Two Dimensions. Reviews of Modern Physics, 1986, 58(4): 977-999.

[24]

Liu H, Li X P, Kong F M, . Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai’an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 2019, 72: 15-33.

[25]

Liu Q, Zhao G C, Han Y G, . Geochronology and Geochemistry of Paleozoic to Mesozoic Granitoids in Western Inner Mongolia, China: Implications for the Tectonic Evolution of the Southern Central Asian Orogenic Belt. The Journal of Geology, 2018, 126(4): 451-471.

[26]

Meng Y K, Xu Z Q, Xu Y, . Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica—English Edition, 2018, 92(2): 462-481.

[27]

Meng Y K, Xiong F H, Xu Z Q, . Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet: Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 2019, 176: 27-41.

[28]

Migon P. Granite Landscapes of the World, 2006, Oxford: Oxford University Press, 384.

[29]

Nonn, H., 1966. Les Régions côtiÈres de la Galice (Espagne). Etude Géomorphologique. 591 (in Spanish)

[30]

Ollier C D. Weathering, 1969, Edinburgh: Oliver and Boyd, 304.

[31]

Parmigiani A, Faroughi S, Huber C, . Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 2016, 532(7600): 492-495.

[32]

Petford N. Rheology of Granitoid Magmas during Ascent and Emplacement. Annual Review of Earth and Planetary Sciences, 2003, 31: 399-427.

[33]

Ramsay J G, Huber M I. The Techniques of Modern Structural Geology, Vol 2, 1987, London: Fold and Fractures. Academic Press, 700.

[34]

Rey P F, Teyssier C, Kruckenberg S C, . Viscous Collision in Channel Explains Double Domes in Metamorphic Core Complexes. Geology, 2011, 39(4): 387-390.

[35]

Rodrigues Waldherr F, Vidal Romaní J R, Willians de Oliveira S. Consideraciones Previas Sobre las Formas del tipo Tafone y Otras Estructuras Menores en la Vertiente Norte del Pão de Açúcar, Rio de Janeiro-Brasil. Cadernos do Laboratorio Xeolóxico de Laxe, 2018, 40: 139-158. (in Spanish)

[36]

Sánchez Cela V. Granitoid Rocks: A New Geological Meaning, 2004, Zaragoza: Prensas Universitarias de Zaragoza. Servicio de Publicaciones, Universidad de Zaragoza, 392.

[37]

Song Z J, Yuan X Y, Gao L, . Quartz Sand Surface Morphology of Granitoid Tafoni at Laoshan, China. Indian Journal of Geomarine Sciences, 2019, 48(1): 43-48.

[38]

Streckeisen A L. Classification and Nomenclature of Plutonic Rocks. Geologische Rundschau, 1967, 63: 773-786.

[39]

Suess E. Das Antlitz der Erde. Vier Bande, 1883, Prag/Leipzig: Tempsky/Freytag

[40]

Tahiri A, Simancas J F, Azor A, . Emplacement of Ellipsoid-Shaped (Diapiric?) Granite: Structural and Gravimetric Analysis of the Oulmès Granite (Variscan Meseta, Morocco). Journal of African Earth Sciences, 2007, 48(5): 301-313.

[41]

Talbot C J, Jackson M P A. Internal Kinematics of Salt Dipairs. The American Association of Petroleum Geologist Bulletin, 1987, 71(9): 1068-1093.

[42]

Twidale C R. Structural Landforms. Landforms Associated with Granitoid Rocks, Faults, and Folded Strata, 1971, Canberra: Australian National University Press, 247.

[43]

Twidale C R. Granite Landforms, 1982, Amsterdam: Elsevier Publishing Company, 372.

[44]

Twidale C R, Vidal Romaní J R. On the Multistage Development of Etch Forms. Geomorphology, 1994, 11(2): 107-124.

[45]

Twidale C R, Vidal Romaní J R. Landforms and Geology of Granite Terrains, 2005, Amsterdam: Balkema, 352

[46]

Ulrich R, Poelchau M H, Rae Auriol S P, . Rock Fluidization during Peak-Ring Formation of Large Impact Structures. Nature, 2018, 562: 511-518.

[47]

Vendeville B C, Jackson M P A. The Rise of Diapirs during Thin-Skinned Extension. Marine and Petroleum Geology, 1992, 9(4): 331-354.

[48]

Vidal Romaní J R, Twidale C R. Sheet Fractures, Other Stress Forms and Some Engineering Implications. Geomorphology, 1999, 31(1/2/3/4): 13-27.

[49]

Vidal Romaní, J. R., 2004. Encyclopedia of Geomorphology Routledge (Sheeting pp. 949–950 and Pressure Release 807–808). Taylor and Francis Group. 2: 1156

[50]

Vidal Romaní J R. Forms and Structural Fabric in Granite Rocks. Cadernos do Laboratorio Xeolóxico de Laxe, 2008, 33: 175-198.

[51]

Vidal Romaní J R, Yepes Temiño J. Historia de la Morfogénesis Granítica. Cadernos do Laboratorio Xeolóxico de Laxe, 2004, 29: 331-360. (in Spanish)

[52]

Vidal Romaní, J. R., Vaqueiro, M., Sanjurjo Sánchez, J., 2014. Granite Landforms in Galicia. World Geomorphological Landscapes. Landscapes and Landforms of Spain. Chapter 4. Springer Verlag. 63–69 (in Spanish)

[53]

Vidal Romaní J R, Yepes J, Rodríguez R. Geomorphic Evolution of the Peninsular Hesperian Massif. Study of a Sector Situated between Lugo and Ourense Provinces (Galicia, NW Spain). Cadernos do Laboratorio Xeolóxico de Laxe, 1998, 25: 165-199. (in Spanish)

[54]

Vidal Romaní J R, González-López L, Vaqueiro M, . Bioweathering Related to Groundwater Circulation in Cavities of Magmatic Rock Massifs. Environmental Earth Sciences, 2015, 73(6): 2997-3010.

[55]

Vidal Romaní J R, Sanjurjo Sánchez J, Grandal-D’Anglade A, . Archeology and Geology with a Special Mention to the Relationship between Rocky Substrate and Rock Art (Petroglyphs). Férvedes, 2018, 9: 51-57. (in Spanish)

[56]

Wang C, Liu L, Korhonen F, . Origins of Early Mesozoic Granitoids and Their Enclaves from West Kunlun, NW China: Implications for Evolving Magmatism Related to Closure of the Paleo-Tethys Ocean. International Journal of Earth Sciences, 2016, 105(3): 941-964.

[57]

Wang X S, Gao J, Li J L, . Petrogenesis and Geodynamic Implications of Late Jurassic Diorite Porphyry in the Neoproterozoic Ophiolitic Mélange of NE Jiangxi (South China). Acta Geologica Sinica—English Edition, 2018, 92(3): 1008-1023.

[58]

Weil A B, Gutiérrez-Alonso G, Johnston S T, . Kinematic Constraints on Buckling a Lithospheric-Scale Orocline along the Northern Margin of Gondwana: A Geologic Synthesis. Tectonophysics, 2013, 582: 25-49.

[59]

Wilhelmy H. Klimamorphologie der Massengesteine, 1958, Braunschweig: G. Westermann, 139-179 (in Spanish)

[60]

Zhu X H, Cao Y T, Liu L, . P-T Path and Geochronology of High Pressure Granitoid Granulite from Danshuiquan Area in Altyn Tagh. Acta Petrologica Sinica, 2014, 30: 3717-3728. (in Chinese with English Abstract)

[61]

Zulauf G, Gutiérrez-Alonso G, Kraus R, . Formation of Chocolate-Tablet Boudins in a Foreland Fold and Thrust Belt: A Case Study from the External Variscides (Almograve, Portugal). Journal of Structural Geology, 2011, 33(11): 1639-1649.

[62]

Zulauf J, Zulauf G, Kraus R, . The Origin of Tablet Boudinage: Results from Experiments Using Power-Law Rock Analogs. Tectonophysics, 2011, 510(3/4): 327-336.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/