Magnesium Isotopic Homogeneity of GSR-1 and RGM-2: Two Potential Standards for Mg Isotope Analysis of Low MgO Felsic Rocks

Lu Chen , Zhian Bao , Honglin Yuan , Kaiyun Chen , Chunlei Zong

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (2) : 249 -253.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (2) : 249 -253. DOI: 10.1007/s12583-019-1261-6
Petrology, Geochemistry and Ore Deposits

Magnesium Isotopic Homogeneity of GSR-1 and RGM-2: Two Potential Standards for Mg Isotope Analysis of Low MgO Felsic Rocks

Author information +
History +
PDF

Abstract

In sample preparation and mass spectrometry analysis, sample dissolution, column chemistry, concentration mismatches, and matrix effects have significant potential for introducing analytical artifacts during Mg isotope analysis. Based on the low MgO content and undesirable matrix elements in felsic rocks, the development of well-characterized felsic standards is essential to reduce inter-laboratory mass bias, enable the assessment of data accuracy, and facilitate the comparison of chemical separation procedures in different laboratories. In this work, the homogeneity and long-term stability of two felsic rock standards, GSR-1 and RGM-2, were evaluated due to their low MgO contents. Furthermore, synthetic solutions with doped matrix elements were used to evaluate potential Mg isotope analytical artifacts using multi-collector inductively coupled plasma mass spectrometry. The accuracy and precision of Mg isotopic compositions in GSR-1 and RGM-2 were assessed by repeated measurements over twelve months. The long-term tests show that the Mg isotopic compositions of the two low MgO felsic rocks (GSR-1 and RGM-2) are homogenous among batches and can be used as low MgO reference materials for accuracy assessments of Mg isotopic analyses. The Mg isotopic compositions (δ26Mg) of GSR-1 and RGM-2 were marked as -0.223‰±0.053‰ (2s, n=50) and -0.184‰±0.058‰ (2s, n=50) respectively.

Keywords

Mg isotopes / analytical geochemistry / felsic rock standards / mass spectrometry

Cite this article

Download citation ▾
Lu Chen, Zhian Bao, Honglin Yuan, Kaiyun Chen, Chunlei Zong. Magnesium Isotopic Homogeneity of GSR-1 and RGM-2: Two Potential Standards for Mg Isotope Analysis of Low MgO Felsic Rocks. Journal of Earth Science, 2020, 31(2): 249-253 DOI:10.1007/s12583-019-1261-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An Y, Huang F. A Review of Mg Isotope Analytical Methods by MC-ICP-MS. Journal of Earth Science, 2014, 16(5): 822-840.

[2]

An Y, Wu F, Xiang Y, . High-Precision Mg Isotope Analyses of Low-Mg Rocks by MC-ICP-MS. Chemical Geology, 2014, 390: 9-21.

[3]

Bao Z, Huang K, Huang T, . Precise Magnesium Isotope Analyses of High-K and Low-Mg Rocks by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 940-953.

[4]

Bolou-Bi E B, Vigier N, Brenot A, . Magnesium Isotope Compositions of Natural Reference Materials. Geostandards and Geoanalytical Research, 2009, 33(1): 95-109.

[5]

Chakrabarti R, Jacobsen S B. The Isotopic Composition of Magnesium in the Inner Solar System. Earth and Planetary Science Letters, 2010, 293(3/4): 349-358.

[6]

Chang V T C, Makishima A, Belshaw N S, . Purification of Mg from Low-Mg Biogenic Carbonates for Isotope Ratio Determination Using Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 2003, 18(4): 296-301.

[7]

Galy A, Belshaw N S, Halicz L, . High-Precision Measurement of Magnesium Isotopes by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. International Journal of Mass Spectrometry, 2001, 208(1): 89-98.

[8]

Handler M R, Baker J A, Schiller M, . Magnesium Stable Isotope Composition of Earth’s Upper Mantle. Earth and Planetary Science Letters, 2009, 282(1/2/3/4): 306-313.

[9]

Hu Y, Harrington M D, Sun Y, . Magnesium Isotopic Homogeneity of San Carlos Olivine: A Potential Standard for Mg Isotopic Analysis by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30(19): 2123-2132.

[10]

Hu Y, Teng F-Z, Plank T, . Magnesium Isotopic Composition of Subducting Marine Sediments. Chemical Geology, 2017, 466: 15-31.

[11]

Huang F, Glessner J, Ianno A, . Magnesium Isotopic Composition of Igneous Rock Standards Measured by MC-ICP-MS. Chemical Geology, 2009, 268(1/2): 15-23.

[12]

Huang K J, Teng F Z, Wei G J, . Adsorption- and Desorption-Controlled Magnesium Isotope Fractionation During Extreme Weathering of Basalt in Hainan Island, China. Earth and Planetary Science Letters, 2012, 359/360: 73-83.

[13]

Jochum K P, Nohl U, Herwig K, . Georem: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 2005, 29(3): 333-338.

[14]

Li W Y, Teng F Z, Ke S, . Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 2010, 74(23): 6867-6884.

[15]

Ling M X, Sedaghatpour F, Teng F Z, . Homogeneous Magnesium Isotopic Composition of Seawater: An Excellent Geostandard for Mg Isotope Analysis. Rapid Communications in Mass Spectrometry, 2011, 25(19): 2828-2836.

[16]

Liu S A, Teng F Z, He Y, . Investigation of Magnesium Isotope Fractionation during Granite Differentiation: Implication for Mg Isotopic Composition of the Continental Crust. Earth and Planetary Science Letters, 2010, 297(3/4): 646-654.

[17]

Pearson N J, Griffin W L, Alard O, . The Isotopic Composition of Magnesium in Mantle Olivine: Records of Depletion and Metasomatism. Chemical Geology, 2006, 226(3/4): 115-133.

[18]

Pogge von Strandmann P A E, Elliott T, Marschall H R, . Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 2011, 75(18): 5247-5268.

[19]

Shalev N, Farkaš J, Fietzke J, . Mg Isotope Interlaboratory Comparison of Reference Materials from Earth-Surface Low-Temperature Environments. Geostandards and Geoanalytical Research, 2018, 42(2): 205-221.

[20]

Sio C K I, Dauphas N, Teng F Z, . Discerning Crystal Growth from Diffusion Profiles in Zoned Olivine by in Situ Mg-Fe Isotopic Analyses. Geochimica et Cosmochimica Acta, 2013, 123: 302-321.

[21]

Su B, Xiao Y, Chen C, . Potential Applications of Fe and Mg Isotopes in Genesis of Chromite Deposits in Ophiolites. Earth Science, 2018, 43(4): 1011-1024.

[22]

Teng F Z, Yang W. Comparison of Factors Affecting the Accuracy of High-Precision Magnesium Isotope Analysis by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28(1): 19-24.

[23]

Teng F Z. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.

[24]

Teng F Z, Li W Y, Ke S, . Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 2010.

[25]

Teng F Z, Li W Y, Ke S, . Magnesium Isotopic Compositions of International Geological Reference Materials. Geostandards and Geoanalytical Research, 2015, 39(3): 329-339.

[26]

Teng F Z, Yin Q Z, Ullmann C V, . Interlaboratory Comparison of Magnesium Isotopic Compositions of 12 Felsic to Ultramafic Igneous Rock Standards Analyzed by MC-ICPMS. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3197-3209.

[27]

Teng F Z, Wadhwa M, Helz R T. Investigation of Magnesium Isotope Fractionation During Basalt Differentiation: Implications for a Chondritic Composition of the Terrestrial Mantle. Earth and Planetary Science Letters, 2007, 261(1/2): 84-92.

[28]

Wang G, Lin Y, Liang X, . Separation of Magnesium from Meteorites and Terrestrial Silicate Rocks for High-Precision Isotopic Analysis Using Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26 9 1878

[29]

Wang S J, Teng F Z, Scott J M. Tracing the Origin of Continental Himu-Like Intraplate Volcanism Using Magnesium Isotope Systematics. Geochimica et Cosmochimica Acta, 2016, 185: 78-87.

[30]

Wiechert U, Halliday A N. Non-Chondritic Magnesium and the Origins of the Inner Terrestrial Planets. Earth and Planetary Science Letters, 2007, 256(3/4): 360-371.

[31]

Wimpenny J, Gíslason S R, James R H, . The Behaviour of Li and Mg Isotopes During Primary Phase Dissolution and Secondary Mineral Formation in Basalt. Geochimica et Cosmochimica Acta, 2010, 74(18): 5259-5279.

[32]

Young E D, Tonui E, Manning C E, . Spinel-Olivine Magnesium Isotope Thermometry in the Mantle and Implications for the Mg Isotopic Composition of Earth. Earth and Planetary Science Letters, 2009, 288(3/4): 524-533.

[33]

Yuan H, Liu X, Bao Z, . A Fast Separation Method for Isotope Analysis Based on Compressed Nitrogen Gas and Ion-Exchange Chromatography Technique—A Case Study of Sr-Nd Isotope Measurement. Journal of Earth Science, 2018, 29(1): 223-229.

[34]

Yuan H, Yuan W, Bao Z, . Development of Two New Copper Isotope Standard Solutions and Their Copper Isotopic Compositions. Geostandards and Geoanalytical Research, 2017, 41(1): 77-84.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/