Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides

Kurt Bucher, Ingrid Stober

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (6) : 1084-1094.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (6) : 1084-1094. DOI: 10.1007/s12583-019-1257-2
Metamorphism and Orogenic Belts—Response from Micro- to Macro-Scale

Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides

Author information +
History +

Abstract

Sagvandite is an enstatite+magnesite rock formed from dunite or harzburgite bodies occurring as tectonically emplaced fragments from the upper mantle in many orogenic belts by interaction with CO2-bearing crustal fluids at upper amphibolite facies P-T conditions. Sagvandite bodies occur widespread in distinct nappes in the Scandinavian Caledonides in Norway. Common to all of the many sagvandite outcrops is their general structure of radial bundles of very coarse cm-sized enstatite crystals and interstitial magnesite. Often some strongly resorbed primary olivine is preserved, in addition to minor accessory Cr-spinel and chromite. The dunite to sagvandite conversion is governed by three metasomatic reactions: (1) carbonatization of peridotite by CO2-bearing fluids; (2) interaction with external fluids containing dissolved silica; (3) loss of Mg by dissolution of forsterite in NaCl-rich deep fluids. Simultaneous progress ξ overall of all three reactions in proportions that conserve the volume of the original dunite can explain the observed structure and mode of sagvandite. The relationship among the progress ξ of the three reactions suggests that loss of Mg by the ultramafic rock is the dominating process in the iso-volume conversion of dunite to sagvandite.

Keywords

sagvandite / peridotite / fluid-rock interaction / metasomatism / CO2-sequestration

Cite this article

Download citation ▾
Kurt Bucher, Ingrid Stober. Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 2019, 30(6): 1084‒1094 https://doi.org/10.1007/s12583-019-1257-2

References

Beinlich A, Plümper O, Hövelmann J, . Massive Serpentinite Carbonation at Linnajavri, N-Norway. Terra Nova, 2012, 24(6): 446-455.
CrossRef Google scholar
Berman R G. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 1988, 29(2): 445-522.
CrossRef Google scholar
Bodinier J L, Godard M. Carlson R W. Orogenic, Ophiolitic, and Abyssal Peridotites. The Mantle and Core, 2004, Oxford: Elsevier-Pergamon
Bucher K, Grapes R. Petrogenesis of Metamorphic Rocks, 2011, 8. Ed., Berlin, Heidelberg: Springer-Verlag, 428
CrossRef Google scholar
Bucher K, Stober I. Fluids in the Upper Continental Crust. Geofluids, 2010, 10(1/2): 241-253.
Contributions to Mineralogy and Petrology, 2015, 169 52
Bucher-Nurminen K. Caledonian Metamorphism of Ultramafic Rocks in the Central Scandinavian Caledonides. Nor. Geol. Unders. Special Publ., 1988, 3: 86-95.
Bucher-Nurminen K. Transfer of Mantle Fluids to the Lower Continental Crust: Constraints from Mantle Mineralogy and Moho Temperature. Chemical Geology, 1990, 83(3/4): 249-261.
CrossRef Google scholar
Bucher-Nurminen K. Mantle Fragments in the Scandinavian Caledonides. Tectonophysics, 1991, 190(2/3/4): 173-192.
CrossRef Google scholar
Czirják A. Metamorphose und Struktur des Svartissen-Deckenkomplexes (Dissertation), 1994, Freiburg: Albert-Ludwigs-University, 71.
Corfu F, Gasser D, Chew D M. New Perspectives on the Caledonides of Scandinavia and Related Areas: Introduction. Geological Society, London, Special Publications, 2014, 390(1): 1-8.
CrossRef Google scholar
Cribb S J. The Torsvik Sagvandite Body, North Norway. Norsk Geologisk Tidskrift, 1988, 62: 161-168.
De Capitani C, Petrakakis K. The Computation of Equilibrium Assemblage Diagrams with Theriak/Domino Software. American Mineralogist, 2010, 95(7): 1006-1016.
CrossRef Google scholar
Eikeland E, Blichfeld A B, Tyrsted C, . Optimized Carbonation of Magnesium Silicate Mineral for CO2 Storage. ACS Applied Materials & Interfaces, 2015, 7(9): 5258-5264.
CrossRef Google scholar
Falk E S, Kelemen P B. Geochemistry and Petrology of Listvenite in the Samail Ophiolite, Sultanate of Oman: Complete Carbonation of Peridotite during Ophiolite Emplacement. Geochimica et Cosmochimica Acta, 2015, 160: 70-90.
CrossRef Google scholar
Gadikota G, Matter J, Kelemen P, . Chemical and Morphological Changes during Olivine Carbonation for CO2 Storage in the Presence of NaCl and NaHCO3. Physical Chemistry Chemical Physics, 2014, 16(10): 4679-4693.
CrossRef Google scholar
Gee D G, Kumpulainen R, Roberts D, . Tectonostratigraphic Map, Scale 1: 2 000 000. Sveriges Geologiska Undersökning, Series, 1985, Stockholm: SGU
Gee D G, Sturt B A. The Caledonide Orogen—Scandinavia and Related Areas, 1985, Chichester: John Wiley and Sons, 1266.
Gee D G, Fossen H, Henriksen N, . From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes, 2008, 31(1): 44-51.
CrossRef Google scholar
Gustavson M, Gjelle S T. Geological Map of Norway, Bedrockmap Sheet Mo i Rana 1: 250 000, 1991, Trondheim: NGU Norwegian Geological Survey
Hauser M. Metamorphose und Struktur des Svartisen-Deckenkomplexes, Holandsfjorden, Norwegen: [Dissertation], 1994, Germany: Albert-Ludwigs-University, Freiburg, 62.
Hinsken T, Bröcker M, Strauss H, . Geochemical, Isotopic and Geochronological Characterization of Listvenite from the Upper Unit on Tinos, Cyclades, Greece. Lithos, 2017, 282/283: 281-297.
CrossRef Google scholar
Kelemen P B, Matter J, Streit E E, . Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 545-576.
CrossRef Google scholar
Kelemen P B, Aines R, Bennett E, . In situ Carbon Mineralization in Ultramafic Rocks: Natural Processes and Possible Engineered Methods. Energy Procedia, 2018, 146: 92-102.
CrossRef Google scholar
Lackner K S, Wendt C H, Butt D P, . Carbon Dioxide Disposal in Carbonate Minerals. Energy, 1995, 20(11): 1153-1170.
CrossRef Google scholar
Li X-P, Rahn M, Bucher K. Serpentinites of the Zermatt-Saas Ophiolite Complex and Their Texture Evolution. Journal of Metamorphic Geology, 2004, 22(3): 159-177.
CrossRef Google scholar
Li X-P, Rahn M, Bucher K. Metamorphic Processes in Rodingites of the Zermatt-Saas Ophiolites. International Geology Review, 2004, 46(1): 28-51.
CrossRef Google scholar
Li X-P, Rahn M, Bucher K. Eclogite Facies Metarodingites-Phase Relations in the System SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-CO2-H2O: An Example from the Zermatt-Saas Ophiolite. Journal of Metamorphic Geology, 2008, 26(3): 347-364.
CrossRef Google scholar
Markl G, Bucher K. Composition of Fluids in the Lower Crust Inferred from Metamorphic Salt in Lower Crustal Rocks. Nature, 1998, 391(6669): 781-783.
CrossRef Google scholar
Menzel M D, Garrido C J, López Sánchez-Vizcaíno V, . Carbonation of Mantle Peridotite by CO2-Rich Fluids: The Formation of Listvenites in the Advocate Ophiolite Complex (Newfoundland, Canada). Lithos, 2018, 323: 238-261.
CrossRef Google scholar
Moore A C. The Petrography and Possible Regional Significance of the Hjelmkona Ultramafic Body (Sagvanditc), Nordmøre, Norway. Norsk Geologisk Tidskrift, 1977, 57: 55-64.
Moore A C, Qvale H. Three Varieties of Alpine-Type Ultramafic Rocks in the Norwegian Caledonides and Basal Gnesis Complex. Lithos, 1977, 10(2): 149-161.
CrossRef Google scholar
Nasir S, Al Sayigh A R, Al Harthy A, . Mineralogical and Geochemical Characterization of Listwaenite from the Semail Ophiolite, Oman. Geochemistry, 2007, 67(3): 213-228.
CrossRef Google scholar
Ohnmacht W. Petrogenesis of Carbonate-Orthopyroxenites (Sagvandites) and Related Rocks from Troms, Northern Norway. Journal of Petrology, 1974, 15(2): 303-324.
CrossRef Google scholar
Pirard C, Hermann J, O’Neill H S C. Petrology and Geochemistry of the Crust-Mantle Boundary in a Nascent Arc, Massif Du Sud Ophiolite, New Caledonia, SW Pacific. Journal of Petrology, 2013, 54(9): 1759-1792.
CrossRef Google scholar
Pettersen K. Sagvandit, en ny Bergart. Tromsø Mus. Aarshefter, 1883, 6: 72-81.
Qiu T, Zhu Y F. Listwaenite in the Sartohay Ophiolitic Mélange (Xinjiang, China): A Genetic Model Based on Petrology, U-Pb Chronology and Trace Element Geochemistry. Lithos, 2018, 302/303: 427-446.
CrossRef Google scholar
Ravna E, Kullerud K, Ellingsen E. Prograde Garnet-Bearing Ultramafic Rocks from the Tromsø Nappe, Northern Scandinavian Caledonides. Lithos, 2006, 92(3/4): 336-356.
CrossRef Google scholar
Ringwood A E, MacGregor I D, Boyd F R. Petrologic Constitution of the Upper Mantle. Carnegie Inst. Washington, Year Book, 1964, 63: 147-152.
Roberts D, Nordgulen, Melezhik V. The Uppermost Allochthon in the Scandinavian Caledonides: From a Laurentian Ancestry through Taconian Orogeny to Scandian Crustal Growth on Baltica. Memoir of the Geological Society of America, 2007, 200: 357-377.
CrossRef Google scholar
Schreyer W, Ohnmacht W, Mannchen J. Carbonate-Orthopyroxenites (Sagvandites) from Troms, Northern Norway. Lithos, 1972, 5(4): 345-364.
CrossRef Google scholar
Seifritz W. CO2 Disposal by Means of Silicates. Nature, 1990, 345 6275 486
CrossRef Google scholar
Sørensen H. A Preliminary Note on Some Peridotites from Northern Norway. Norsk Geologisk Tidskrift, 1955, 35: 93-104.
Sørensen H. A Petrographical and Structural Study of the Rocks around the Peridotite at Engenbræ, Holandsfjord, Northem Norway. Nor. Geol. Unders., 1955, 191: 71-102.
Stober I, Bucher K. Deep-Fluids: Neptune Meets Pluto. Hydrogeology Journal, 2005, 13(1): 112-115.
CrossRef Google scholar
Stober I, Bucher K. The Upper Continental Crust, an Aquifer and Its Fluid: Hydaulic and Chemical Data from 4 km Depth in Fractured Crystalline Basement Rocks at the KTB Test Site. Geofluids, 2005, 5(1): 8-19.
CrossRef Google scholar
Tamura A, Arai S. Harzburgite-Dunite-Orthopyroxenite Suite as a Record of Supra-Subduction Zone Setting for the Oman Ophiolite Mantle. Lithos, 2006, 90(1/2): 43-56.
CrossRef Google scholar
Thayer T P. Alpine-Type Sensu Strictu(Ophiolitic) Peridotites: Refractory Residues from Partial Melting or Igneous Sediments? A Contribution to the Discussion of the Paper: “The Origin of Ultramafic and Ultrabasic Rocks” by P. J. Wyllie. Tectonophysics, 1969, 7(5/6): 511-516.
CrossRef Google scholar
Trommsdorff V, Skippen G. Helgeson H C. Metasomatism Involving Fluids in CO2-H2O-NaCl. Chemical Transport in Metasomatic Processes, 1987, 133-152
CrossRef Google scholar
Walther J V, Helgeson H C. Calculation of the Thermodynamic Properties of Aqueous Silica and the Solubility of Quartz and Its Polymorphs at High Pressures and Temperatures. American Journal of Science, 1977, 277(10): 1315-1351.
CrossRef Google scholar
Whitney D L, Evans B W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.
CrossRef Google scholar
Wyllie J P. The Origin of Ultramafic and Ultrabasic Rocks. Tectonophysics, 1969, 7(5/6): 437-455.
CrossRef Google scholar
Zwaan K B, Fareth E, Grogan P W. Geological Map of Norway, Bedrockmap Sheet Tromsø 1 : 250 000, 1998, Trondheim, Norway: NGU Norwegian Geological Survey

Accesses

Citations

Detail

Sections
Recommended

/