Timanide (Ediacaran-Early Cambrian) Metamorphism at the Transition from Eclogite to Amphibolite Facies in the Beloretsk Complex, SW-Urals, Russia

Arne P. Willner , Michael Gopon , Johannes Glodny , Victor N. Puchkov , Hans-Peter Schertl

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (6) : 1144 -1165.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (6) : 1144 -1165. DOI: 10.1007/s12583-019-1249-2
Metamorphism and Orogenic Belts—Response from Micro- to Macro-Scale

Timanide (Ediacaran-Early Cambrian) Metamorphism at the Transition from Eclogite to Amphibolite Facies in the Beloretsk Complex, SW-Urals, Russia

Author information +
History +
PDF

Abstract

The Beloretsk Metamorphic Complex in the SW Urals formed at a convergent eastern margin of Baltica during the Neoproterozoic-Early Cambrian Timanide orogeny. It comprises three major units with lenses of facies-critical metabasites within metasedimentary rocks: A lowermost eclogite unit, an intermediate garnet amphibolite unit and an upper amphibolite-greenschist unit. Pressure (P)-temperature (T)-paths of four rocks from the two lowermost units were determined mainly by PT pseudosection techniques showing similar clockwise loops at different peak metamorphic, water-saturated conditions: A phengite-bearing eclogite shows peak PT conditions of 16.5–18.5 kbar/525–550 °C (stage I) followed by stage II at 11.5–13.0 kbar/585–615 °C. A garnet amphibolite from the intermediate unit yields lower peak conditions of 11.7–14.5 kbar/480–510 °C (stage I) followed by stage II at 9.5–11.0 kbar/535–560 °C. However, a granite gneiss in the eclogite unit shows similar maximum pressures as the eclogite, but higher temperatures at 15.6–16.2 kbar/660–675 °C, whereas a garnet micaschist contains comparable high pressure relicts, but underwent an advanced midcrustal reequilibration at 7.5–9.0 kbar/555–610 °C. We dated the eclogite by a 7-point Rb/Sr mineral isochron (phengite, omphacite, apatite) at 532.2±9.1 Ma interpreted as age of crystallisation of the eclogitic peak PT assemblage. This age is the youngest compared to the known Timanide metamorphic and magmatic ages.

Keywords

Urals / eclogite / high pressure metamorphism / Timanide orogeny / Rb-Sr dating / PT pseudosections / PT-path

Cite this article

Download citation ▾
Arne P. Willner, Michael Gopon, Johannes Glodny, Victor N. Puchkov, Hans-Peter Schertl. Timanide (Ediacaran-Early Cambrian) Metamorphism at the Transition from Eclogite to Amphibolite Facies in the Beloretsk Complex, SW-Urals, Russia. Journal of Earth Science, 2019, 30(6): 1144-1165 DOI:10.1007/s12583-019-1249-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alekseev A A. Riphean and Vendian Magmatism in the Southern Urals, 1984, Moscow: Nauka, 136.

[2]

Alekseev A A, Alekseeva G V, Galieva A R, . Metamorphic Geology of the Western Slope of the Southern Urals, 2006, Ufa: Gilem, 212.

[3]

Alekseev A A, Kovalev S G, Timofeeva Y A. The Beloretsk Metamorphic Complex, 2009, Ufa: Dizain Poligraph Service, 208.

[4]

Angiboust S, Glodny J, Oncken O, . In Search of Transient Subduction Interfaces in the Dent Blanche-Sesia Tectonic System (W. Alps). Lithos, 2014, 205: 298-321.

[5]

Beckholmen M, Glodny J. Timanian Blueschist-Facies Metamorphism in the Kvarkush Metamorphic Basement, Northern Urals, Russia. Geological Society, London, Memoirs, 2004, 30(1): 125-134.

[6]

Berman R G. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 1988, 29(2): 445-522.

[7]

Berman R G. Thermobarometry Using Multi-Equilibrium Calculations: A New Techique, with Petrological Applications. Canadian Mineralogist, 1991, 29: 833-855.

[8]

Bernhardt H-J. MINCALC-V5, a non EXCEL Based Computer Program for General Electron-Microprobe Mineral Analyses Data Processing. Abstract of 20th IMA-Meeting, 2010, 869.

[9]

Brown D, Juhlin C, Alvarez-Marron J, . Crustal-Scale Structure and Evolution of an Arc-Continent Collision Zone in the Southern Urals, Russia. Tectonics, 1998, 17(2): 158-170.

[10]

Brown D, Spadea P, Puchkov V, . Arc Continent Collision in the Southern Urals. Earth Science Reviews, 2006, 79: 261-287.

[11]

Cohen K M, Finney S C, Gibbard P L, . The ICS International Chronostratigraphic Chart. Episodes, 2013, 36(3): 199-204.

[12]

Connolly J A D. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 1990, 290(6): 666-718.

[13]

Connolly J A D. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 2005, 236(1/2): 524-541.

[14]

Diener J F A, Powell R, White R W, . A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeOMgO-Al2O3-SiO2-H2O-O2. Journal of Metamorphic Geology, 2007, 25(6): 631-656.

[15]

Evans B W. Phase Relations of Epidote-Blueschists. Lithos, 1990, 25(1/2/3): 3-23.

[16]

Galieva A R. Geology, Petrology and Conditions of Origin of Eclogites and Host Rocks of the Beloretsk Metamorphic Complex (Southern Urals): [Dissertation], 2004, Ufa: Russian Academy of Science, 144.

[17]

Giese U, Glasmacher U A, Kozlov V, . Structural Framework of the Bashkirian Anticlinorium, SW Urals. Geologische Rundschau, 1999, 87(4): 526-544.

[18]

Glasmacher U A, Bauer W, Giese U, . The Metamorphic Complex of Beloretzk, SW Urals, Russia—A Terrane with a Polyphase Mesoto Neoproterozoic Thermo-Dynamic Evolution. Precambrian Research, 2001, 110(1/2/3/4): 185-213.

[19]

Glodny J, Ring U, Kühn A. Coeval High-Pressure Metamorphism, Thrusting, Strike-Slip, and Extensional Shearing in the Tauern Window, Eastern Alps. Tectonics, 2008, 27 4 TC4004

[20]

Grazhdankin D V, Marusin V V, Meert J, . Kotlin Regional Stage in the South Urals. Doklady Earth Sciences, 2011, 440(1): 1222-1226.

[21]

Harris M A. The Stages of Magmatism and Metamorphism in the Pre-Jurassic History of the Urals and Preurals, 1977, Moscow: Nauka, 296.

[22]

Hawthorne F C, Oberti R, Harlow G E, . Nomenclature of the Amphibole Supergroup. American Mineralogist, 2012, 97(11/12): 2031-2048.

[23]

Hetzel R, Romer R L. A Moderate Exhumation Rate for the High-Pressure Maksyutov Complex, Southern Urals, Russia. Geological Journal, 2000, 35(3/4): 327-344.

[24]

Holland T J B, Powell R. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 1998, 16(3): 309-343.

[25]

Holland T J B, Powell R. Thermodynamics of Order-Disorder in Minerals; II, Symmetric Formalism Applied to Solid Solutions. American Mineralogist, 1996, 81(11/12): 1425-1437.

[26]

Holland T J B, Powell R. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 2003, 145(4): 492-501.

[27]

Jamieson R A, O’Beirne-Ryan A M. Decompression-Induced Growth of Albite Porphyroblasts, Fleur de Lys Supergroup, Western Newfoundland. Journal of Metamorphic Geology, 1991, 9(4): 433-439.

[28]

Kolesnikov A V, Marusin V V, Nagovitsin K E, . Ediacaran Biota in the Aftermath of the Kotlinian Crisis: Asha Group of the South Urals. Precambrian Research, 2015, 263: 59-78.

[29]

Krasnobaev A A, Kozlov V I, Puchkov V N, . The Akhmerovo Granite Massif: A Proxy of Mesoproterozoic Intrusive Magmatism in the Southern Urals. Doklady Earth Sciences, 2008, 418(1): 103-108.

[30]

Krogh Ravna E. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 2000, 18(2): 211-219.

[31]

Kuznetsov N B, Natapov L M, Belousova E A, . Geochronological, Geochemical and Isotopic Study of Detrital Zircon Suites from Late Neoproterozoic Clastic Strata along the NE Margin of the East European Craton: Implications for Plate Tectonic Models. Gondwana Research, 2010, 17(2/3): 583-601.

[32]

Kuznetsov N B, Soboleva A A, Udoratina O V, . Pre-Ordovician Tectonic Evolution and Volcano Plutonic Associations of the Timanides and Northern Pre-Uralides, Northeast Part of the East European Craton. Gondwana Research, 2007, 12(3): 305-323.

[33]

Leake B E, Woolley A R, Arps C E S, . Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 1997, 9(3): 623-651.

[34]

Lennykh V I. The Regional Metamorphism of the Precambrian Deposits of the Western Urals Western Slope and Ural-Tau Ridge, 1968, Sverdlowsk: Uralian Branch of the USSR Academy of Science, 67.

[35]

Ludwig K. Isoplot V. 3.71: A Geochronological Toolkit for Microsoft Excel, 2009, Berkeley, California: Berkeley Geochronology Center, 70.

[36]

Maslov A V, Erdtmann B D, Ivanov K S, . The Main Tectonic Events, Depositional History, and the Palaeogeography of the Southern Urals during the Riphean-Early Palaeozoic. Tectonophysics, 1997, 276(1/2/3/4): 313-335.

[37]

Matenaar I, Glasmacher U A, Pickel W, . Incipient Metamorphism between Ufa and Beloretzk, Western Fold-And-Thrust Belt, Southern Urals, Russia. Geologische Rundschau, 1999, 87(4): 545-560.

[38]

Matte P, Maluski H, Caby R, . Geodynamic Model and 39Ar/40Ar Dating for the Generation and Emplacement of the High Pressure (HP) Metamorphic Rocks in SW Urals. Compte Rendu Academie de Science Paris, 1993, 317: 1667-1674.

[39]

McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method, 1999, Oxford: Oxford University Press, 269.

[40]

Meyer M, Klemd R, Hegner E, . Subduction and Exhumation Mechanisms of Ultra-High and High-Pressure Oceanic and Continental Crust at Makbal (Tianshan, Kazakhstan and Kyrgyzstan). Journal of Metamorphic Geology, 2014, 32(8): 861-884.

[41]

Nance R D, Gutiérrez-Alonso G, Keppie J D, . A Brief History of the Rheic Ocean. Geoscience Frontiers, 2012, 3(2): 125-135.

[42]

Nance R D, Murphy J B. Contrasting Basement Isotopic Signatures and the Palinspastic Restoration of Peripheral Orogens: Example from the Neoproterozoic Avalonian-Cadomian Belt. Geology, 1994, 22 7 617

[43]

Nikiforov O V, Kaleganov B A. Potassium-Argon Dating in the Zonal Metamorphism of the Kvarkush Plateau, 1991, 78-79.

[44]

Pindell J L, Barrett S F. Dengo G, Case J E. Geological Evolution of the Caribbean Region: A Plate-Tectonic Perspective. The Caribbean Region, 1990, 405-432.

[45]

Powell R, Holland T J B. Relating Formulations of the Thermodynamics of Mineral Solid Solutions: Activity Modeling of Pyroxenes, Amphiboles, and Micas. American Mineralogist, 1999, 84(1/2): 1-14.

[46]

Puchkov V N. Burg J P, Ford M. Structure and Geodynamics of the Uralian Orogen. Orogeny through Time, 1997, 201-236.

[47]

Puchkov V N. Geology of the Urals and Pre-Urals, 2010, Ufa: Russian Academy of Sience, Ufa Branch, Institute of Geology, 280.

[48]

Puchkov V N. Structural Stages and Evolution of the Urals. Mineralogy and Petrology, 2013, 107(1): 3-37.

[49]

Puchkov V N, Bogdanova S V, Ernst R E, . The ca. 1 380 Ma Mashak Igneous Event of the Southern Urals. Lithos, 2013, 174: 109-124.

[50]

Puchkov V N, Krasnobaev A A, Sergeeva N D. The New Data on Stratigraphy of the Riphean Stratotype in the Southern Urals, Russia. Journal of Geoscience and Environment Protection, 2014, 02(3): 108-116.

[51]

Rieder M, Cavazini G, D’Yakonov Y S, . Nomenclature of the Micas. Canadian Mineralogist, 1998, 36: 905-912.

[52]

Ring U, Brandon M T. Ductile Deformation and Mass Loss in the Franciscan Subduction Complex: Implications for Exhumation Processes in Accretionary Wedges. Geological Society, London, Special Publications, 1999, 154(1): 55-86.

[53]

Ring U, Glodny J. No Need for Lithospheric Extension for Exhuming (U)HP Rocks by Normal Faulting. Journal of the Geological Society, 2010, 167(2): 225-228.

[54]

Rusin A I. Metamorphic Map of the Northern Part of the Kvarkush Uplift (Northern Urals), 1996, 96-99.

[55]

Semikhatov M A, Shurkin K A, Aksenov E M, . A New Stratigraphic Scale for the Precambrian of the USSR. Izvestija, Akademia Nauk SSSR, Ser. Geol., 1991, 4: 3-13.

[56]

Shardakova G Y. Geochemistry and Isotopic Ages of Granitoids of the Bashkirian Mega-Anticlinorium: Evidence for Several Pulses of Tectono-Magmatic Activity at the Junction Zone between the Uralian Orogen and East European Platform. Geochemistry International, 2016, 54(7): 594-608.

[57]

Shervais J W, Dennis A J, Mcgee J J, . Deep in the Heart of Dixie: Pre-Alleghanian Eclogite and HP Granulite Metamorphism in the Carolina Terrane, South Carolina, USA. Journal of Metamorphic Geology, 2003, 21(1): 65-80.

[58]

Shvetsov P N. Stratigraphy of the Beloretzk Complex, Southern Urals. Sovjetskaya Geologiya, 1980, 3: 43-55.

[59]

Sobolev D, Avtoneyev S V, Belkovskaya T Y, . Tectonic Map of the Urals on a Scale 1: 1 000 000 with Explanatory Notes, 1968.

[60]

Spear F S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America Monograph, 1993, 799.

[61]

Torsvik T, Smethurst M, Meert J, . Continental Break-up and Collision in the Neoproterozoic and Palaeozoic—A Tale of Baltica and Laurentia. Earth-Science Reviews, 1996, 40(3/4): 229-258.

[62]

Villa I M. Isotopic Closure. Terra Nova, 1998, 10(1): 42-47.

[63]

Villa I M. From Nanometer to Megameter: Isotopes, Atomic-Scale Processes, and Continent-Scale Tectonic Models. Lithos, 2006, 87(3/4): 155-173.

[64]

Villa I M. 39Ar-40Ar Geochronology of Mono- and Polymetamorphic Basement Rocks. Periodico di Mineralogia, 2015, 84: 615-632.

[65]

Villa I M, De Bièvre P, Holden N E, . IUPAC-IUGS Recommendation on the Half Life of 87Rb. Geochimica et Cosmochimica Acta, 2015, 164: 382-385.

[66]

Waters D J, Martin H N. Geobarometry of Phengite-Bearing Eclogites. Terra Abstracts, 1993, 5: 410-411.

[67]

White C E, Barr S M, Jamieson R A, . Neoproterozoic High-Pressure/Low-Temperature Metamorphic Rocks in the Avalon Terrane, Southern New Brunswick, Canada. Journal of Metamorphic Geology, 2001, 19(5): 519-530.

[68]

Wijbrans J R, McDougall I. 40Ar/39Ar Dating of White Micas from an Alpine High-Pressure Metamorphic Belt on Naxos (Greece): The Resetting of the Argon Isotopic System. Contributions to Mineralogy and Petrology, 1986, 93(2): 187-194.

[69]

Willner A P. Pressure-Temperature Evolution of a Late Palaeozoic Paired Metamorphic Belt in North-Central Chile (34°–35°30′S). Journal of Petrology, 2005, 46(9): 1805-1833.

[70]

Willner A P, Ermolaeva T, Stroink L, . Contrasting Provenance Signals in Riphean and Vendian Sandstones in the SW Urals (Russia): Constraints for a Change from Passive to Active Continental Margin Conditions in the Neoproterozoic. Precambrian Research, 2001, 110(1/2/3/4): 215-239.

[71]

Willner A P, Gerdes A, Massonne H-J, . Crustal Evolution of the Northeast Laurentian Margin and the Peri-Gondwanan Microcontinent Ganderia Prior to and during Closure of the Iapetus Ocean: Detrital Zircon U-Pb and Hf Isotope Evidence from Newfoundland. Geoscience Canada, 2014, 41(3): 345-361.

[72]

Willner A P, Sindern S, Metzger R, . Typology and Single Grain U/Pb Ages of Detrital Zircons from Proterozoic Sandstones in the SW Urals (Russia): Early Time Marks at the Eastern Margin of Baltica. Precambrian Research, 2002, 124(1): 1-20.

[73]

Willner A P, Thomson S N, Kröner A, . Time Markers for the Evolution and Exhumation History of a Late Palaeozoic Paired Metamorphic Belt in North-Central Chile (34°–35°30′S). Journal of Petrology, 2005, 46(9): 1835-1858.

[74]

Willner A P, Wartho J A, Kramm U, . Laser 40Ar/39Ar Ages of Single Detrital White Mica Grains Related to the Exhumation of Neoproterozoic and Late Devonian High Pressure Rocks in the Southern Urals (Russia). Geological Magazine, 2004, 141(2): 161-172.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/