In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties
Xiang Wang, Xiaoxiang Xu, Yu Ye, Chao Wang, Dan Liu, Xiaochao Shi, Sha Wang, Xi Zhu
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (5) : 964-976.
In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties
In-situ powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra were measured on the natural crystals of calcite (Ca0.996Mg0.004CO3), dolomite (Ca0.497Mg0.454Fe0.046Mn0.003CO3) and magnesite (Mg0.988Ca0.010Fe0.002CO3), with a temperature up to 796 K. The thermal expansion coefficients were evaluated for these carbonate minerals, resulting in the values of 2.7×10-5, 3.3×10-5 and 3.5×10-5 K-1 for calcite, dolomite and magnesite, respectively. The magnitude of these coefficients is in the same order as those for the isothermal and elastic moduli of these carbonates (e.g., calcite<dolomite<magnesite). The IR-active internal modes of the CO3 group systematically shift to lower frequencies at elevated temperature, and the isobaric (γ iP) and isothermal (γ iT) Gruneisen parameters for the internal modes are generally smaller than 0.5. The corresponding anharmonic parameters (a i) are typically within the range of -1.5.+1×10-5 K-1, which are significantly smaller in magnitude than those for the external modes. We also calculate the thermodynamic properties (internal energy, heat capacities and entropy) at high temperatures for these carbonates, and the anharmonic contribution to thermodynamics shows an order of calcite>dolomite>magnesite. The Debye model (harmonic approximation) would be valid for magnesite to simulating the thermodynamic properties and isotope fractionation β-factor at high P-T condition.
calcite / dolomite / magnesite / high-temperature FTIR / anharmonicity / thermodynamics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/
〈 |
|
〉 |