Remote Detection of Hydrocarbon Microseepage in a Loess Covered Area

Liang Zhao , Daming Wang , Shengbo Chen , Lin Li , Tianyu Zhang

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (1) : 207 -214.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (1) : 207 -214. DOI: 10.1007/s12583-019-1235-8
Petroleum, Natural Gas Geology

Remote Detection of Hydrocarbon Microseepage in a Loess Covered Area

Author information +
History +
PDF

Abstract

Hydrocarbon microseepage can result in related near-surface mineral alterations. In this study, we evaluated the potential of detecting these alterations with field measured and satellite acquired hyperspectral data. Fourteen soil samples and reflectance spectra were collected in the Xifeng Oilfield, a loess covered area. Soil samples were analyzed in the laboratory for calcite, dolomite, kaolinite, illite, and mixedlayer illite/smectite content, and we processed reflectance spectra for continuum removal to derive clay and carbonate mineral absorption depth (H). High correlation between absorption depth and mineral content was shown for clay and mineral carbonate with field measured spectra. Based on the result for the field spectra, we proposed and tested a fast index based on the absorption depth of clay and carbonate minerals with a hyperspectral image of the area. The detected hydrocarbon microseepage anomalies matched well with those shown in the geological map.

Keywords

hyperspectral remote sensing / hydrocarbon microseepage / spectrum absorption parameters / multiple regression analysis / fast index / geochemistry

Cite this article

Download citation ▾
Liang Zhao, Daming Wang, Shengbo Chen, Lin Li, Tianyu Zhang. Remote Detection of Hydrocarbon Microseepage in a Loess Covered Area. Journal of Earth Science, 2020, 31(1): 207-214 DOI:10.1007/s12583-019-1235-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almeida-Filho R, Miranda F P, Yamakawa T. Remote Detection of a Tonal Anomaly in an Area of Hydrocarbon Microseepage, Tucano Basin, North-Eastern Brazil. International Journal of Remote Sensing, 1999, 20(13): 2683-2688.

[2]

Chen S B, Zhao Y, Zhao L, . Hydrocarbon Micro-Seepage Detection by Altered Minerals Mapping from Airborne Hyper-Spectral Data in Xifeng Oilfield, China. Journal of Earth Science, 2017, 28(4): 656-665.

[3]

Ding X, Wang Y P, He Z C. The Application Research of Satellite Remote Sensing to Exploration of Hydrocarbon Alteration Information. Chinese Science Bulletin, 1993, 38(17): 1475-1479.

[4]

Dou W C, Liu L F, Wu K J, . Origin and Significance of Secondary Porosity: A Case Study of Upper Triassic Tight Sandstones of Yanchang Formation in Ordos Basin, China. Journal of Petroleum Science and Engineering, 2017, 149: 485-496.

[5]

Galvão L S, Formaggio A R, Couto E G, . Relationships between the Mineralogical and Chemical Composition of Tropical Soils and Topography from Hyperspectral Remote Sensing Data. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2): 259-271.

[6]

Gemail K, Abd-El Rahman N M, Ghiath B M, . Integration of ASTER and Airborne Geophysical Data for Mineral Exploration and Environmental Mapping: A Case Study, Gabal Dara, North Eastern Desert, Egypt. Environmental Earth Sciences, 2016, 75(7): 1-12.

[7]

He Z L, Deng X L, Ai S M. Hydrocarbon Micro-Seepage Anomalies Detection Algorithm Based on FPCS for Hyperspectral Remote Sensing Data. Applied Mechanics and Materials, 2014, 596: 457-462.

[8]

Hörig B, Kühn F, Oschütz F, . HyMap Hyperspectral Remote Sensing to Detect Hydrocarbons. International Journal of Remote Sensing, 2001, 22(8): 1413-1422.

[9]

Hou F, Wang D, Cai Y, . The Abnormal Information Extraction of the Hydrocarbon Micro-Seepage Based on the Hyperspectral Image. Proceedings of 2011 19th International Conference on Geoinformatics, Shanghai, 2011, 1-4.

[10]

Huang Z Q, Yao Z X, Cheng M H. Lithologic Anomaly Identification of Hydrocarbon Microseepages in Kelasu Fold-and-Thrust Belt, West China Using ASTER Imagery. Geoscience and Remote Sensing Symposium IEEE, Québec, 2014, 863-866.

[11]

Kruse F A, Boardman J W, Huntington J F. Comparison of Airborne Hyperspectral Data and Eo-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1388-1400.

[12]

Kühn F, Oppermann K, Hörig B. Hydrocarbon Index—An Algorithm for Hyperspectral Detection of Hydrocarbons. International Journal of Remote Sensing, 2004, 25(12): 2467-2473.

[13]

Lammoglia T, de Souza Filho C R. Spectroscopic Characterization of Oils Yielded from Brazilian Offshore Basins: Potential Applications of Remote Sensing. Remote Sensing of Environment, 2011, 115(10): 2525-2535.

[14]

Lammoglia T, de Souza Filho C R. Unraveling Hydrocarbon Microseepages in Onshore Basins Using Spectral-Spatial Processing of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Surveys in Geophysics, 2013, 34(3): 349-373.

[15]

Liu N, Chen X, Li Q Q. Study on the Alteration Minerals Caused by Oil and Gas Microseepage by Extracting Endmembers from Hyperion. IEEE International Geoscience and Remote Sensing Symposium, Quebec City, 2014.

[16]

Petrovic A, Khan S D, Thurmond A K. Integrated Hyperspectral Remote Sensing, Geochemical and Isotopic Studies for Understanding Hydrocarbon-Induced Rock Alterations. Marine and Petroleum Geology, 2012, 35(1): 292-308.

[17]

Pour A B, Hashim M, Park Y, . Mapping Alteration Mineral Zones and Lithological Units in Antarctic Regions Using Spectral Bands of ASTER Remote Sensing Data. Geocarto International, 2017, 33(12): 1281-1306.

[18]

Post J L, Crawford S M. Uses of Near-Infared Spectra for the Identification of Clay Minerals. Applied Clay Science, 2014, 95: 383-387.

[19]

Schaepman M E, Ustin S L, Plaza A J, . Earth System Science Related Imaging Spectroscopy-An Assessment. Remote Sensing of Environment, 2009, 113: S123-S137.

[20]

Shi P L, Fu B H, Ninomiya Y, . Multispectral Remote Sensing Mapping for Hydrocarbon Seepage-Induced Lithologic Anomalies in the Kuqa Foreland Basin, South Tian Shan. Journal of Asian Earth Sciences, 2012, 46: 70-77.

[21]

Tian Q. Study on Oil-Gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, XXXIXB7: 157-162.

[22]

van der Meer F, van Dijk P, van der Werff H, . Remote Sensing and Petroleum Seepage: A Review and Case Study. Terra Nova, 2002, 14(1): 1-17.

[23]

van der Meer F. Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 2004, 5(1): 55-68.

[24]

van der Meijde M, Knox N M, Cundill S L, . Detection of Hydrocarbons in Clay Soils: A Laboratory Experiment Using Spectroscopy in the Mid- And Thermal Infrared. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 384-388.

[25]

van der Meer F D, van der Werff H M A, van Ruitenbeek F J A, . Multi- And Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation, 2012, 14(1): 112-128.

[26]

Wu X Y, Xu X M, Wu C F, . Responses of Microbial Communities to Light-Hydrocarbon Microseepage and Novel Indicators for Microbial Prospecting of Oil/Gas in the Beihanzhuang Oilfield, Northern Jiangsu, China. Geomicrobiology Journal, 2014, 31(8): 697-707.

[27]

Xu D Q, Ni G Q, Jiang L L, . Exploring for Natural Gas Using Reflectance Spectra of Surface Soils. Advances in Space Research, 2008, 41(11): 1800-1817.

[28]

Xu N, Hu Y X, Lei B, . Mineral Information Extraction for Hyperspectral Image Based on Modified Spectral Feature Fitting Algorithm. Spectroscopy and Spectral Analysis, 2011, 31: 1639-1643.

[29]

Yang H, Zhang J, van der Meer F, . Geochemistry and Field Spectrometry for Detecting Hydrocarbon Microseepage. Terra Nova, 1998, 10(5): 231-235.

[30]

Zhang C Y, Qin Q M, Chen L, . Rapid Determination of Coalbed Methane Exploration Target Region Utilizing Hyperspectral Remote Sensing. International Journal of Coal Geology, 2015, 150–151: 19-34.

[31]

Zhao H, Zhang L, Zhang X, . Hyperspectral Feature Extraction Based on the Reference Spectral Background Removal Method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 1-15.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/