Heterogeneity of Mantle Peridotites from the Polar Urals (Russia): Evidence from New LA-ICP-MS Data

Vladimir R. Shmelev , Shoji Arai , Akihiro Tamura

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 431 -450.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 431 -450. DOI: 10.1007/s12583-019-1224-y
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Heterogeneity of Mantle Peridotites from the Polar Urals (Russia): Evidence from New LA-ICP-MS Data

Author information +
History +
PDF

Abstract

To discuss the nature of the compositional heterogeneity of the peridotite massifs of the Polar Urals (Russia), the geochemical study by LA-ICP-MS of pyroxenes and amphiboles from these mantle formations was performed. The trace element compositions in clinopyroxenes indicate the existence of the mantle protolith of two types. The first protolith type, represented by lherzolites and diopside harzburgites, was originated from the partial melting (5%–10%) under the spinel fades conditions, while the second one, represented by diopside harzburgites, was formed under the polybaric partial melting (17%–19%) under garnet and spinel fades conditions. Subsequently, the mantle peridotite protolith was subject to fluid-induced partial melting in the suprasubduction setting that was resulted in the formation of harzburgites. Being affected by penetrating melts and fluids peridotites experienced the refertilization (LREE enrichment of clinopyroxenes) and high-temperature hydratation with subsequent development of pargasite and Mg amphibole. The high-T fluid-induced metamorphism at the subduction zone was accompanied by the formation of metaperidotites with clinochlore and REE-depleted tremolite.

Keywords

pyroxene / amphibole / peridotite / LA-ICP-MS / Polar Urals / Russia

Cite this article

Download citation ▾
Vladimir R. Shmelev, Shoji Arai, Akihiro Tamura. Heterogeneity of Mantle Peridotites from the Polar Urals (Russia): Evidence from New LA-ICP-MS Data. Journal of Earth Science, 2019, 30(3): 431-450 DOI:10.1007/s12583-019-1224-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asimow P D, Stolper E M. Steady-State Mantle-Melt Interactions in one Dimension: I. Equilibrium Transport and Melt Focusing. Journal of Petrology, 1999, 40(3): 475-494.

[2]

Arai S. Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships: Review and Interpretation. Chemical Geology, 1994, 113(3/4): 191-204.

[3]

Arai S, Miura M. Formation and Modification of Chromitites in the Mantle. Lithos, 2016, 264: 277-295.

[4]

Batanova V G, Belousov I A, Savelieva G N, . Consequences of Channelized and Diffuse Melt Transport in Supra-Subduction Zone Mantle: Evidence from the Voykar Ophiolite (Polar Urals). Journal of Petrology, 2011, 52(12): 2483-2521.

[5]

Belousov I A, Batanova V G, Savelieva G N, . Evidence for the Suprasubduction Origin of Mantle Section Rocks of Voykar Ophiolite, Polar Urals. Doklady Earth Sciences, 2009, 429(1): 1394-1398.

[6]

Bizimis M, Salters V J M, Bonatti E. Trace and REE Content of Clinopyroxenes from Supra-Subduction Zone Peridotites. Implications for Melting and Enrichment Processes in Island Arcs. Chemical Geology, 2000, 165(1/2): 67-85.

[7]

Chashchukhin I S, Votyakov S L, Shchapova Y V. Crystal Chemistry of Spinel and Oxythermobarometry of Ultramafic Rocks from Fold Areas, 2007, Yekaterinburg: IGG UrO RAN, 310 (in Russian)

[8]

Coltorti M, Bonadiman C, Faccini B, . Amphiboles from Suprasubduction and Intraplate Lithospheric Mantle. Lithos, 2007, 99(1/2): 68-84.

[9]

Dick H J B, Bullen T. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76.

[10]

Dobretsov N L, Moldavantsev J E, Kazak A P, . Petrology and Metamorphism of Ancient Pphiolites: Evidence from the Polar Urals and Western Sayan, 1977, Nauka: Novosibirsk, 217 (in Russian)

[11]

Hellebrand E, Snow J E, Dick H J B, . Coupled Major and Trace Elements as Indicators of the Extent of Melting in Mid-Ocean-Ridge Peridotites. Nature, 2001, 410(6829): 677-681.

[12]

Hellebrand E, Snow J E, Hoppe P, . Garnet-Field Melting and Late-Stage Refertilization in “Residual” Abyssal Peridotites from the Central Indian Ridge. Journal of Petrology, 2002, 43(12): 2305-2338.

[13]

Ishida Y, Morishita T, Arai S, . Simultaneous in-situ Multi-Element Analysis of Minerals on Thin Section Using LA-ICP-MS. The Science Reports of Kanazawa University, 2004, 48: 31-42.

[14]

Ishii T, Robinson P T, Maekawa H, . Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogazawara-Mariana Forearc, LEG 125. Proceeding of the Ocean Drilling Program, Scientific Results, 1992, 125: 445-485.

[15]

Jean M M, Shervais J W, Choi S H, . Melt Extraction and Melt Refertilization in Mantle Peridotite of the Coast Range Ophiolite: An LA-ICP-MS Study. Contributions to Mineralogy and Petrology, 2010, 159(1): 113-136.

[16]

Johnson K T M, Dick H J B, Shimizu N. Melting in the Oceanic Upper Mantle: An Ion Microprobe Study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research, 1990, 95(B3): 2661-2678.

[17]

Johnson K T M, Dick H J B. Open System Melting and Temporal and Spatial Variation of Peridotite and Basalt at the Atlantis II Fracture Zone. Journal of Geophysical Research, 1992, 97(B6): 9219-9241.

[18]

Kelemen P B, Shimizu N, Dunn T. Relative Depletion of Niobium in some Arc Magmas and the Continental Crust: Partitioning of K, Nb, La and Ce during Melt/rock Reaction in the Upper Mantle. Earth and Planetary Science Letters, 1993, 120(3/4): 111-134.

[19]

Kelemen P B, Hirth G, Shimizu N, . A Review of Melt Migration Processes in the Adiabatically Upwelling Mantle beneath Oceanic Spreading Ridges. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1997, 355(1723): 283-318.

[20]

Khedr M Z, Arai S, Tamura A, . Clinopyroxenes in High-P Metaperidotites from Happo-O’ne, Central Japan: Implications for Wedge-Transversal Chemical Change of Slab-Derived Fluids. Lithos, 2010, 119(3/4): 439-456.

[21]

Leake B E, Woolley A R, Arps C E S, . Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 1997, 61(405): 295-310.

[22]

Longerich H P, Jackson S E G D. Inter-Laboratory Note. Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation. Journal of Analutical Atomic Spectrometry, 1996, 11(9): 899-904.

[23]

Makeev A B, Perevozchikov B V, Afanasiev A K. Chromite Potential of the Polar Urals, 1985, 152 (in Russian)

[24]

Morishita T, Ishida Y, Arai S, . Determination of Multiple Trace Element Compositions in Thin (> 30 μm) Layers of NIST SRM 614 and 616 Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Geostandards and Geoanalytical Research, 2005, 29(1): 107-122.

[25]

Muntener O, Manatschal G, Desmurs L, . Plagioclase Peridotites in Ocean-Continent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere. Journal of Petrology, 2010, 51(1/2): 255-294.

[26]

McDonough W F, Sun S S. The Composition of the Earth. Chemical Geology, 1995, 120(3/4): 223-253.

[27]

Niu Y L. Bulk-Rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-Melting Processes beneath Mid-Ocean Ridges. Journal of Petrology, 2004, 45(12): 2423-2458.

[28]

Parkinson I J, Pearce J A, Thirwall M F, . Fryer P, Pearce J A, Stokking L B, . Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana Forearc, Leg 125. Proceedings of the Ocean Drilling Program: Scientific Results, 1992, 487-506.

[29]

Peacock S M, Wang K. Seismic Consequences of Warm Versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan. Science, 1999, 286(5441): 937-939.

[30]

Pearce N J G, Perkins W T, Westgate J A, . A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards and Geoanalytical Research, 1997, 21(1): 115-144.

[31]

Pearce J A, Barker P F, Edwards S J, . Geochemistry and Tectonic Significance of Peridotites from the South Sandwich Arc-Basin System, South Atlantic. Contributions to Mineralogy and Petrology, 2000, 139(1): 36-53.

[32]

Perevozchikov B V, Kenig V V, Lukin A A, . Chromites of the Rai-Iz Massif in the Polar Urals (Russia). Geology of Ore Deposits, 2005, 47: 206-222.

[33]

Pertsev A N, Savelieva G N, Simakin S G. Primary Melts Imprinted in Plutonic Rocks of the Voykar Ophiolite: Evidences from Clinopyroxene Geochemistry. Ofioliti, 2003, 28: 33-41.

[34]

Remizov D N, Grigoriev S I, Petrov S Y, . New Age Datings of Gabbroides of the Kershor Complex (Polar Urals). Doklady Earth Sciences, 2010, 434(1): 1235-1239.

[35]

Salters V J M, Stracke A. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 2004, 5 5 Q05004

[36]

Sano S, Kimura J I. Clinopyroxene REE Geochemistry of the Red Hills Peridotite, New Zealand: Interpretation of Magmatic Processes in the Upper Mantle and in the Moho Transition Zone. Journal of Petrology, 2007, 48(1): 113-139.

[37]

Savelieva G N. Gabbro-Ultrabasic Complexes of the Urals Ophiolites and Their Analogues in Modern Oceanic Crust, 1987, Moscow: Nauka, 245 (in Russian)

[38]

Savelieva G N, Sobolev A V, Batanova V G, . Structure of Melt Flow Channels in the Mantle. Geotectonics, 2008, 42(6): 430-447.

[39]

Savelieva G N, Batanova V G, Berezhnaya N A, . Polychronous Formation of Mantle Complexes in Ophiolites. Geotectonics, 2013, 47(3): 167-179.

[40]

Savelieva G N, Batanova V G, Sobolev A V. Pyroxene-Cr-Spinel Exsolution in Mantle Lherzolites of the Syum-Keu Ophiolite Massif (Arctic Urals). Russian Geology and Geophysics, 2016, 57(10): 1419-1436.

[41]

Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[42]

Seyler M, Lorand J P, Dick H J B, . Pervasive Melt Percolation Reactions in Ultra-Depleted Refractory Harzburgites at the Mid-Atlantic Ridge, 15°20•N: ODP Hole 1274A. Contributions to Mineralogy and Petrology, 2006, 153(3): 303-319.

[43]

Sharma M, Wasserburg G J, Papanastassiou D A, . High 143Nd/144Nd in Extremely Depleted Mantle Rocks. Earth and Planetary Science Letters, 1995, 135: 101-114.

[44]

Shmelev V R. Uftramafic Rocks of the Syum-Keu Massif (Polar Ural). Structure, Petrology, Dynamometamorphism, 1991, 79 (in Russian)

[45]

Shmelev V R. Mantle Ultrabasites of Ophiolite Complexes in the Polar Urals: Petrogenesis and Geodynamic Environments. Petrology, 2011, 19(6): 618-640.

[46]

Shmelev V R, Meng F C. The Nature and Age of Basic Rocks of the Rai-Iz Ophiolite Massif (Polar Urals). Doklady Earth Sciences, 2013, 451(1): 758-761.

[47]

Shmelev V R, Arai S, Tamura A. The Nature of Mantle Rocks in Ophiolites of the Polar Urals. Doklady Earth Sciences, 2018, 479(2): 472-476.

[48]

Spadea P, Zanetti A, Vannucci R. Mineral Chemistry of Uftramafic Massifs in the Southern Uralides Orogenic Belt (Russia) and the Petrogenesis of the Lower Palaeozoic Ophiolites of the Uralian Ocean. Geological Society, London, Special Publications, 2003, 218(1): 567-596.

[49]

Tamura A, Arai S, Ishimaru S, . Petrology and Geochemistry of Peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: Micro- and Macro-Scale Melt Penetrations into Peridotites. Contributions to Mineralogy andPetrology, 2008, 155(4): 491-509.

[50]

Tiepolo M, Oberti R, Zanetti A, . Trace-Element Partitioning between Amphibole and Silicate Melt. Reviews in Mineralogy and Geochemistry, 2007, 67(1): 417-452.

[51]

Ulrich M, Picard C, Guillot S, . Multiple Melting Stages and Refertilization as Indicators for Ridge to Subduction Formation: The New Caledonia Ophiolite. Lithos, 2010, 115: 223-236.

[52]

Warren J M, Shimizu N. Cryptic Variations in Abyssal Peridotite Compositions: Evidence for Shallow-Level Melt Infiltration in the Oceanic Lithosphere. Journal of Petrology, 2010, 51(1/2): 395-423.

[53]

Warren J M. Global Variations in Abyssal Peridotite Compositions. Lithos, 2016, 248-251.

[54]

Yang J S, Meng F C, Xu X Z, . Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals. Gondwana Research, 2015, 27(2): 459-485.

[55]

Yazeva R G, Bochkarev V V. Voykar Volcano-Plutonic Belt (Polar Urals), 1984, 158 (in Russian)

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/