Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar−39Ar Geochronology

Hanwen Dong , Yuanku Meng , Zhiqin Xu , Hui Cao , Zhiyu Yi , Zeliang Ma

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 535 -548.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 535 -548. DOI: 10.1007/s12583-019-1223-z
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar−39Ar Geochronology

Author information +
History +
PDF

Abstract

The Yardoi dome is located in the eastern end of the northwest-southeast extending North Himalayan domes (NHD). The dome exposes a granite pluton in the core and three lithologictectonic units separated by the upper detachment fault and the lower detachment fault. The Yardoi detachment fault (YDF), corresponding to the lower detachment fault, is a 800 m strongly deformed top-NW shear zone. LA-ICP-MS zircon U-Pb dating yielded a crystallization ages of 19.57±0.23 to 15.5±0.11 Ma for the leucogranite dyke swarm, which indicates that the ductile motion along the YDF began at ca. 20 Ma. The 40Ar/39Ar muscovite ages of 14.05±0.2 to 13.2±0.2 Ma and the 40Ar/39Ar biotite age of 13.15±0.2 Ma, suggest that the exhumation led to cooling through the 370 °C Ar closure temperature in muscovite at ≈14 Ma to the 335 °C Ar closure temperature in biotite at ≈13 Ma. Our new geochronological data from the Yardoi dome and other domes in the Tethyan Himalayan Sequences suggest that the ductile deformation in the region began at or before ≈36 Ma in a deep tectonic level, resulting in southward ductile flow at the mid-crustal tectonic level that continued from 20 to 13 Ma. Comparing the Yardoi dome to other domes in the NHD, the cooling ages show a clear diachronism and they are progressively younger from the West Himalayan to the East Himalayan.

Keywords

leucogranite / geochronology / Yardoi dome / southern Tibet / Himalayan Orogen

Cite this article

Download citation ▾
Hanwen Dong, Yuanku Meng, Zhiqin Xu, Hui Cao, Zhiyu Yi, Zeliang Ma. Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar−39Ar Geochronology. Journal of Earth Science, 2019, 30(3): 535-548 DOI:10.1007/s12583-019-1223-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aikman A B, Harrison T M, Ding L. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 2008, 274(1/2): 14-23.

[2]

Aoya M, Wallis S R, Terada K, . North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 2005, 33(11): 853-856.

[3]

Aoya M, Wallis S R, Kawakami T, . The Malashan Gneiss Dome in South Tibet: Comparative Study with the Kangmar Dome with Special Reference to Kinematics of Deformation and Origin of Associated Granites. Geological Society London Special Publications, 2006, 268(1): 471-495.

[4]

Beck R A, Burbank D W, Sercombe W J, . Stratigraphic Evidence for an Early Collision between Northwest India and Asia. Nature, 1995, 373(6509): 55-58.

[5]

Bureau of GeologyMineral Resources of Xizang Autonomous Region BGMRXAR Regional Geology of Xizang (Tibet) Autonomous Region, 1993, Beijing: Geological Publishing House (in Chinese)

[6]

Burchfiel B C, Chen Z L, Hodges K V, . The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt. Geological Society America Special Paper, 1992, 269: 1-41.

[7]

Burchfiel B C, Royden L H. North-South Extension within the Convergent Himalayan Region. Geology, 1985, 13(10): 679-682.

[8]

Burg J P, Chen G M. Tectonics and Structural Zonation of Southern Tibet, China. Nature, 1984, 311(5983): 219-223.

[9]

Chen Z L, Liu Y P, Hodges K V, . The Kangmar Dome: A Metamorphic Core Complex in Southern Xizang (Tibet). Science, 1990, 250(4987): 1552-1556.

[10]

Diedesch T F, Jessup M J, Cottle J M, . Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome. Lithosphere, 2016, 8(5): 480-504.

[11]

Ding H X, Zhang Z M, Dong X, . Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents: Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 2016, 435: 64-73.

[12]

Ding L, Kapp P, Wan X Q. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 2005.

[13]

Dodson M H. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology, 1973, 40(3): 259-274.

[14]

Gansser A. The Geology of the Himalayas, 1964, New York: Wiley Interscience, 289.

[15]

Gao L E, Zeng L S, Hou K J, . Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 2013, 58(28/29): 3546-3563.

[16]

Gao L E, Zeng L S, Asimow P D. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 2017, 45(1): 39-42.

[17]

Geological Survey of Shannxi Province 1: 200 000 Geological Map of the Zedong County (China). Geological Publishing House, Beijing (in Chinese) Geological Survey of Yunnan Province, 2004. 1:250 000 Geological Map of the Longzi County (China), 1994, Beijing: Geological Publishing House (in Chinese)

[18]

Grove M, Harrison T M. 40Ar* Diffusion in Fe-Rich Biotite. American Mineralogist, 1996, 81(7/8): 940-951.

[19]

Guo L, Zhang J J, Zhang B. Structures, Kinematics, Thermochronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya. Progress in Natural Science, 2008, 18(7): 851-860.

[20]

Harrison T M. Diffusion of 40Ar in Hornblende. Contributions to Mineralogy and Petrology, 1982, 78(3): 324-331.

[21]

Harrison T M, Aleinikoff J N, Compston W. Observations and Controls on the Occurrence of Inherited Zircon in Concord-Type Granitoids, New Hampshire. Geochimica et Cosmochimica Acta, 1987, 51(9): 2549-2558.

[22]

Harrison T M, Copeland P, Kidd W S F, . Raising Tibet. Science, 1992, 255(5052): 1663-1670.

[23]

Harrison T M, Lovera O M, Grove M. New Insights into the Origin of Two Contrasting Himalayan Granite Belts. Geology, 1997, 25(10): 899-902.

[24]

Hauck M L, Nelson K D, Brown L D, . Crustal Structure of the Himalayan Orogen at ≈90° East Longitude from Project INDEPTH Deep Reflection Profiles. Tectonics, 1998, 17(4): 481-500.

[25]

Heim A, Gansser A. Central Himalaya, 1939, Delhi, India: Hindustan Publishing Corporation, 1-246.

[26]

Hou Z Q, Zheng Y C, Zeng L S, . Eocene-Oligocene Granitoids in Southern Tibet: Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 2012, 350: 38-52.

[27]

Hu X M, Garzanti E, Wang J G, . The Timing of India-Asia Collision Onset-Facts, Theories, Controversies. Earth-Science Reviews, 2016, 160: 264-299.

[28]

Jain A K, Manickavasagam R M. Inverted Metamorphism in the Intracontinental Ductile Shear Zone during Himalayan Collision Tectonics. Geology, 1993, 21(5): 407-410.

[29]

Kawakami T, Aoya M, Wallis S R, . Contact Metamorphism in the Malashan Dome, North Himalayan Gneiss Domes, Southern Tibet: An Example of Shallow Extensional Tectonics in the Tethys Himalaya. Journal of Metamorphic Geology, 2007, 25(8): 831-853.

[30]

King J, Harris N, Argles T, . First Field Evidence of Southward Ductile Flow of Asian Crust beneath Southern Tibet. Geology, 2007, 35(8): 727-730.

[31]

King J, Harris N, Argles T, . Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Geological Society of America Bulletin, 2011, 123(1/2): 218-239.

[32]

Langille J, Lee J, Hacker B, . Middle Crustal Ductile Deformation Patterns in Southern Tibet: Insights from Vorticity Studies in Mabja Dome. Journal of Structural Geology, 2010, 32(1): 70-85.

[33]

Langille J M, Jessup M J, Cottle J, . Kinematic and Thermal Studies of the Leo Pargil Dome: Implications for Synconvergent Extension in the NW Indian Himalaya. Tectonics, 2014, 33(9): 1766-1786.

[34]

Lee J, Whitehouse M J. Onset of Mid-Crustal Extensional Flow in Southern Tibet: Evidence from U/Pb Zircon Ages. Geology, 2007, 35(1): 45-48.

[35]

Lee J, Hacker B R, Wang Y. Evolution of North Himalayan Gneiss Domes: Structural and Metamorphic Studies in Mabja Dome, Southern Tibet. Journal of Structural Geology, 2004, 26(12): 2297-2316.

[36]

Lee J, Hacker B R, Dinklage W S, . Evolution of the Kangmar Dome, Southern Tibet: Structural, Petrologic, and Thermochronologic Constraints. Tectonics, 2000, 19(5): 872-895.

[37]

Lee J, McClelland W, Wang Y, . Oligocene-Miocene Middle Crustal Flow in Southern Tibet: Geochronology of Mabja Dome. Geological Society London Special Publications, 2006, 268(1): 445-469.

[38]

Li G W, Tian Y T, Kohn B P, . Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications. Tectonophysics, 2015, 643: 80-93.

[39]

Lister G S, Baldwin S L. Modelling the Effect of Arbitrary P-T-t Histories on Argon Diffusion in Minerals Using the MacArgon Program for the Apple Macintosh. Tectonophysics, 1996, 253(1/2): 83-109.

[40]

Makovsky Y, Klemperer S L, Ratschbacher L, . Midcrustal Reflector on INDEPTH Wide-Angle Profiles: An Ophiolitic Slab beneath the India-Asia Suture in Southern Tibet?. Tectonics, 1999, 18(5): 793-808.

[41]

McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method, 1999, Oxford: Oxford University Press, 1-269.

[42]

Meng Y K, Xu Z Q, Gao C S, . The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 2018, 34(3): 513-546. (in Chinese with English Abstract)

[43]

Meng Y K, Xu Z Q, Ma S W, . Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica-English Edition, 2018, 92(2): 462-481.

[44]

Mezger K. Vielzeuf D, Vidal P. Geochronology in Granulites. Granulites and Crustal Evolution, 1990, 451-470

[45]

Pidgeon R T, Aftalion M. Bowes D R, Leake B E. Crustal Evolution in Northwestern Britain and Adjacent Regions. Cognetic and Inherited Zircon U-Pb Systems in Granites: Paleozoic Granites of Scotland and England, 1978, 183-220.

[46]

Quigley M C, Yu L J, Gregory C, . U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet. Tectonophysics, 2008, 446(1/2/3/4): 97-113.

[47]

Quigley M C, Yu L J, Liu X H, . 40Ar/39Ar Thermochronology of the Kampa Dome, Southern Tibet: Implications for Tectonic Evolution of the North Himalayan Gneiss Domes. Tectonophysics, 2006, 421(3/4): 269-297.

[48]

Searle M P, Godin L. The South Tibetan Detachment and the Manaslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 2003, 111(5): 505-523.

[49]

Smit M A, Hacker B R, Lee J. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 2014, 42(7): 591-594.

[50]

Sun G M, Li X P, Duan W Y, . Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 2018, 29(5): 1026-1039.

[51]

Tapponnier P, Peltzer G, Armijo R. On the Mechanics of the Collision between India and Asia. Geological Society London Special Publications, 1986, 19(1): 113-157.

[52]

Treloar P J, Coward M P. Indian Plate Motion and Shape: Constraints on the Geometry of the Himalayan Orogen. Tectonophysics, 1991, 191(3/4): 189-198.

[53]

Wang J M, Wu F Y, Rubatto D, . Early Miocene Rapid Exhumation in Southern Tibet: Insights from P-T-t-D-Magmatism Path of Yardoi Dome. Lithos, 2018, 307: 38-56.

[54]

Webb A A G, Guo H C, Clift P D, . The Himalaya in 3D: Slab Dynamics Controlled Mountain Building and Monsoon Intensification. Lithosphere, 2017, 9(4): 637-651.

[55]

Xiong F H, Yang J S, Xu X Z, . Compositional and Isotopic Heterogeneities in the Neo-Tethyan Upper Mantle Recorded by Coexisting Al-Rich and Cr-Rich Chromitites in the Purang Peridotite Massif, SW Tibet (China). Journal of Asian Earth Sciences, 2018, 159: 109-129.

[56]

Xu Z Q, Yang J S, Li H B, . On the Tectonics of the India-Asia Collision. Acta Geologica Sinica-English Edition, 2011, 85(1): 1-33.

[57]

Xu Z Q, Ji S C, Cai Z H, . Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya: Constraints from Deformation, Fabrics and Geochronology. Gondwana Research, 2012, 21(1): 19-36.

[58]

Xu Z Q, Wang Q, Pecher A, . Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene. Tectonics, 2013, 32(2): 191-215.

[59]

Yan D P, Zhou M F, Robinson P T, . Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau: Data from the Nielaxiongbo Gneiss Dome, SE Tibet. International Geology Review, 2012, 54(6): 615-632.

[60]

Yin A. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 2006, 76(1/2): 1-131.

[61]

Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.

[62]

Yu F, Li Z G, Zhao Z D, . Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area, Central-Western Gangdese, Tibet. Acta Petrologica Sinica, 2010, 26(7): 2217-2225.

[63]

Zeng L S, Liu J, Gao L, . Early Oligocene Anatexis in the Yardoi Gneiss Dome, Southern Tibet and Geological Implications. Chinese Science Bulletin, 2009, 54(1): 104-112.

[64]

Zeng L S, Gao L E, Xie K J, . Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 2011, 303(3/4): 251-266.

[65]

Zeng L S, Gao L E. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 2017, 33(5): 1420-1444.

[66]

Zhang H F, Harris N, Parrish R, . Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 2004, 228(1/2): 195-212.

[67]

Zhang J J, Guo L, Zhang B. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Scientia Geologica Sinica, 2007, 42(1): 16-30.

[68]

Zhang J J, Santosh M, Wang X X, . Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 2012, 21(4): 939-960.

[69]

Zhang L, Ye Y, Qin S, . Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1040-1048.

[70]

Zhang Z M, Ding H X, Dong X, . High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1010-1025.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/