Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar−39Ar Geochronology

Hanwen Dong, Yuanku Meng, Zhiqin Xu, Hui Cao, Zhiyu Yi, Zeliang Ma

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 535-548.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 535-548. DOI: 10.1007/s12583-019-1223-z
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar−39Ar Geochronology

Author information +
History +

Abstract

The Yardoi dome is located in the eastern end of the northwest-southeast extending North Himalayan domes (NHD). The dome exposes a granite pluton in the core and three lithologictectonic units separated by the upper detachment fault and the lower detachment fault. The Yardoi detachment fault (YDF), corresponding to the lower detachment fault, is a 800 m strongly deformed top-NW shear zone. LA-ICP-MS zircon U-Pb dating yielded a crystallization ages of 19.57±0.23 to 15.5±0.11 Ma for the leucogranite dyke swarm, which indicates that the ductile motion along the YDF began at ca. 20 Ma. The 40Ar/39Ar muscovite ages of 14.05±0.2 to 13.2±0.2 Ma and the 40Ar/39Ar biotite age of 13.15±0.2 Ma, suggest that the exhumation led to cooling through the 370 °C Ar closure temperature in muscovite at ≈14 Ma to the 335 °C Ar closure temperature in biotite at ≈13 Ma. Our new geochronological data from the Yardoi dome and other domes in the Tethyan Himalayan Sequences suggest that the ductile deformation in the region began at or before ≈36 Ma in a deep tectonic level, resulting in southward ductile flow at the mid-crustal tectonic level that continued from 20 to 13 Ma. Comparing the Yardoi dome to other domes in the NHD, the cooling ages show a clear diachronism and they are progressively younger from the West Himalayan to the East Himalayan.

Keywords

leucogranite / geochronology / Yardoi dome / southern Tibet / Himalayan Orogen

Cite this article

Download citation ▾
Hanwen Dong, Yuanku Meng, Zhiqin Xu, Hui Cao, Zhiyu Yi, Zeliang Ma. Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar−39Ar Geochronology. Journal of Earth Science, 2019, 30(3): 535‒548 https://doi.org/10.1007/s12583-019-1223-z

References

Aikman A B, Harrison T M, Ding L. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 2008, 274(1/2): 14-23.
CrossRef Google scholar
Aoya M, Wallis S R, Terada K, . North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 2005, 33(11): 853-856.
CrossRef Google scholar
Aoya M, Wallis S R, Kawakami T, . The Malashan Gneiss Dome in South Tibet: Comparative Study with the Kangmar Dome with Special Reference to Kinematics of Deformation and Origin of Associated Granites. Geological Society London Special Publications, 2006, 268(1): 471-495.
CrossRef Google scholar
Beck R A, Burbank D W, Sercombe W J, . Stratigraphic Evidence for an Early Collision between Northwest India and Asia. Nature, 1995, 373(6509): 55-58.
CrossRef Google scholar
Bureau of GeologyMineral Resources of Xizang Autonomous Region BGMRXAR Regional Geology of Xizang (Tibet) Autonomous Region, 1993, Beijing: Geological Publishing House (in Chinese)
Burchfiel B C, Chen Z L, Hodges K V, . The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt. Geological Society America Special Paper, 1992, 269: 1-41.
CrossRef Google scholar
Burchfiel B C, Royden L H. North-South Extension within the Convergent Himalayan Region. Geology, 1985, 13(10): 679-682.
CrossRef Google scholar
Burg J P, Chen G M. Tectonics and Structural Zonation of Southern Tibet, China. Nature, 1984, 311(5983): 219-223.
CrossRef Google scholar
Chen Z L, Liu Y P, Hodges K V, . The Kangmar Dome: A Metamorphic Core Complex in Southern Xizang (Tibet). Science, 1990, 250(4987): 1552-1556.
CrossRef Google scholar
Diedesch T F, Jessup M J, Cottle J M, . Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome. Lithosphere, 2016, 8(5): 480-504.
CrossRef Google scholar
Ding H X, Zhang Z M, Dong X, . Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents: Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 2016, 435: 64-73.
CrossRef Google scholar
Ding L, Kapp P, Wan X Q. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 2005.
Dodson M H. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology, 1973, 40(3): 259-274.
CrossRef Google scholar
Gansser A. The Geology of the Himalayas, 1964, New York: Wiley Interscience, 289.
Gao L E, Zeng L S, Hou K J, . Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 2013, 58(28/29): 3546-3563.
CrossRef Google scholar
Gao L E, Zeng L S, Asimow P D. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 2017, 45(1): 39-42.
CrossRef Google scholar
Geological Survey of Shannxi Province 1: 200 000 Geological Map of the Zedong County (China). Geological Publishing House, Beijing (in Chinese) Geological Survey of Yunnan Province, 2004. 1:250 000 Geological Map of the Longzi County (China), 1994, Beijing: Geological Publishing House (in Chinese)
Grove M, Harrison T M. 40Ar* Diffusion in Fe-Rich Biotite. American Mineralogist, 1996, 81(7/8): 940-951.
CrossRef Google scholar
Guo L, Zhang J J, Zhang B. Structures, Kinematics, Thermochronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya. Progress in Natural Science, 2008, 18(7): 851-860.
CrossRef Google scholar
Harrison T M. Diffusion of 40Ar in Hornblende. Contributions to Mineralogy and Petrology, 1982, 78(3): 324-331.
CrossRef Google scholar
Harrison T M, Aleinikoff J N, Compston W. Observations and Controls on the Occurrence of Inherited Zircon in Concord-Type Granitoids, New Hampshire. Geochimica et Cosmochimica Acta, 1987, 51(9): 2549-2558.
CrossRef Google scholar
Harrison T M, Copeland P, Kidd W S F, . Raising Tibet. Science, 1992, 255(5052): 1663-1670.
CrossRef Google scholar
Harrison T M, Lovera O M, Grove M. New Insights into the Origin of Two Contrasting Himalayan Granite Belts. Geology, 1997, 25(10): 899-902.
CrossRef Google scholar
Hauck M L, Nelson K D, Brown L D, . Crustal Structure of the Himalayan Orogen at ≈90° East Longitude from Project INDEPTH Deep Reflection Profiles. Tectonics, 1998, 17(4): 481-500.
CrossRef Google scholar
Heim A, Gansser A. Central Himalaya, 1939, Delhi, India: Hindustan Publishing Corporation, 1-246.
Hou Z Q, Zheng Y C, Zeng L S, . Eocene-Oligocene Granitoids in Southern Tibet: Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 2012, 350: 38-52.
CrossRef Google scholar
Hu X M, Garzanti E, Wang J G, . The Timing of India-Asia Collision Onset-Facts, Theories, Controversies. Earth-Science Reviews, 2016, 160: 264-299.
CrossRef Google scholar
Jain A K, Manickavasagam R M. Inverted Metamorphism in the Intracontinental Ductile Shear Zone during Himalayan Collision Tectonics. Geology, 1993, 21(5): 407-410.
CrossRef Google scholar
Kawakami T, Aoya M, Wallis S R, . Contact Metamorphism in the Malashan Dome, North Himalayan Gneiss Domes, Southern Tibet: An Example of Shallow Extensional Tectonics in the Tethys Himalaya. Journal of Metamorphic Geology, 2007, 25(8): 831-853.
CrossRef Google scholar
King J, Harris N, Argles T, . First Field Evidence of Southward Ductile Flow of Asian Crust beneath Southern Tibet. Geology, 2007, 35(8): 727-730.
CrossRef Google scholar
King J, Harris N, Argles T, . Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Geological Society of America Bulletin, 2011, 123(1/2): 218-239.
CrossRef Google scholar
Langille J, Lee J, Hacker B, . Middle Crustal Ductile Deformation Patterns in Southern Tibet: Insights from Vorticity Studies in Mabja Dome. Journal of Structural Geology, 2010, 32(1): 70-85.
CrossRef Google scholar
Langille J M, Jessup M J, Cottle J, . Kinematic and Thermal Studies of the Leo Pargil Dome: Implications for Synconvergent Extension in the NW Indian Himalaya. Tectonics, 2014, 33(9): 1766-1786.
CrossRef Google scholar
Lee J, Whitehouse M J. Onset of Mid-Crustal Extensional Flow in Southern Tibet: Evidence from U/Pb Zircon Ages. Geology, 2007, 35(1): 45-48.
CrossRef Google scholar
Lee J, Hacker B R, Wang Y. Evolution of North Himalayan Gneiss Domes: Structural and Metamorphic Studies in Mabja Dome, Southern Tibet. Journal of Structural Geology, 2004, 26(12): 2297-2316.
CrossRef Google scholar
Lee J, Hacker B R, Dinklage W S, . Evolution of the Kangmar Dome, Southern Tibet: Structural, Petrologic, and Thermochronologic Constraints. Tectonics, 2000, 19(5): 872-895.
CrossRef Google scholar
Lee J, McClelland W, Wang Y, . Oligocene-Miocene Middle Crustal Flow in Southern Tibet: Geochronology of Mabja Dome. Geological Society London Special Publications, 2006, 268(1): 445-469.
CrossRef Google scholar
Li G W, Tian Y T, Kohn B P, . Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications. Tectonophysics, 2015, 643: 80-93.
CrossRef Google scholar
Lister G S, Baldwin S L. Modelling the Effect of Arbitrary P-T-t Histories on Argon Diffusion in Minerals Using the MacArgon Program for the Apple Macintosh. Tectonophysics, 1996, 253(1/2): 83-109.
CrossRef Google scholar
Makovsky Y, Klemperer S L, Ratschbacher L, . Midcrustal Reflector on INDEPTH Wide-Angle Profiles: An Ophiolitic Slab beneath the India-Asia Suture in Southern Tibet?. Tectonics, 1999, 18(5): 793-808.
CrossRef Google scholar
McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method, 1999, Oxford: Oxford University Press, 1-269.
Meng Y K, Xu Z Q, Gao C S, . The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 2018, 34(3): 513-546. (in Chinese with English Abstract)
Meng Y K, Xu Z Q, Ma S W, . Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica-English Edition, 2018, 92(2): 462-481.
CrossRef Google scholar
Mezger K. Vielzeuf D, Vidal P. Geochronology in Granulites. Granulites and Crustal Evolution, 1990, 451-470
CrossRef Google scholar
Pidgeon R T, Aftalion M. Bowes D R, Leake B E. Crustal Evolution in Northwestern Britain and Adjacent Regions. Cognetic and Inherited Zircon U-Pb Systems in Granites: Paleozoic Granites of Scotland and England, 1978, 183-220.
Quigley M C, Yu L J, Gregory C, . U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet. Tectonophysics, 2008, 446(1/2/3/4): 97-113.
CrossRef Google scholar
Quigley M C, Yu L J, Liu X H, . 40Ar/39Ar Thermochronology of the Kampa Dome, Southern Tibet: Implications for Tectonic Evolution of the North Himalayan Gneiss Domes. Tectonophysics, 2006, 421(3/4): 269-297.
CrossRef Google scholar
Searle M P, Godin L. The South Tibetan Detachment and the Manaslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 2003, 111(5): 505-523.
CrossRef Google scholar
Smit M A, Hacker B R, Lee J. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 2014, 42(7): 591-594.
CrossRef Google scholar
Sun G M, Li X P, Duan W Y, . Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 2018, 29(5): 1026-1039.
CrossRef Google scholar
Tapponnier P, Peltzer G, Armijo R. On the Mechanics of the Collision between India and Asia. Geological Society London Special Publications, 1986, 19(1): 113-157.
CrossRef Google scholar
Treloar P J, Coward M P. Indian Plate Motion and Shape: Constraints on the Geometry of the Himalayan Orogen. Tectonophysics, 1991, 191(3/4): 189-198.
CrossRef Google scholar
Wang J M, Wu F Y, Rubatto D, . Early Miocene Rapid Exhumation in Southern Tibet: Insights from P-T-t-D-Magmatism Path of Yardoi Dome. Lithos, 2018, 307: 38-56.
Webb A A G, Guo H C, Clift P D, . The Himalaya in 3D: Slab Dynamics Controlled Mountain Building and Monsoon Intensification. Lithosphere, 2017, 9(4): 637-651.
Xiong F H, Yang J S, Xu X Z, . Compositional and Isotopic Heterogeneities in the Neo-Tethyan Upper Mantle Recorded by Coexisting Al-Rich and Cr-Rich Chromitites in the Purang Peridotite Massif, SW Tibet (China). Journal of Asian Earth Sciences, 2018, 159: 109-129.
CrossRef Google scholar
Xu Z Q, Yang J S, Li H B, . On the Tectonics of the India-Asia Collision. Acta Geologica Sinica-English Edition, 2011, 85(1): 1-33.
CrossRef Google scholar
Xu Z Q, Ji S C, Cai Z H, . Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya: Constraints from Deformation, Fabrics and Geochronology. Gondwana Research, 2012, 21(1): 19-36.
CrossRef Google scholar
Xu Z Q, Wang Q, Pecher A, . Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene. Tectonics, 2013, 32(2): 191-215.
CrossRef Google scholar
Yan D P, Zhou M F, Robinson P T, . Constraining the Mid-Crustal Channel Flow beneath the Tibetan Plateau: Data from the Nielaxiongbo Gneiss Dome, SE Tibet. International Geology Review, 2012, 54(6): 615-632.
CrossRef Google scholar
Yin A. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 2006, 76(1/2): 1-131.
CrossRef Google scholar
Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
CrossRef Google scholar
Yu F, Li Z G, Zhao Z D, . Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area, Central-Western Gangdese, Tibet. Acta Petrologica Sinica, 2010, 26(7): 2217-2225.
Zeng L S, Liu J, Gao L, . Early Oligocene Anatexis in the Yardoi Gneiss Dome, Southern Tibet and Geological Implications. Chinese Science Bulletin, 2009, 54(1): 104-112.
CrossRef Google scholar
Zeng L S, Gao L E, Xie K J, . Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 2011, 303(3/4): 251-266.
CrossRef Google scholar
Zeng L S, Gao L E. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 2017, 33(5): 1420-1444.
Zhang H F, Harris N, Parrish R, . Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 2004, 228(1/2): 195-212.
CrossRef Google scholar
Zhang J J, Guo L, Zhang B. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Scientia Geologica Sinica, 2007, 42(1): 16-30.
Zhang J J, Santosh M, Wang X X, . Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 2012, 21(4): 939-960.
CrossRef Google scholar
Zhang L, Ye Y, Qin S, . Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1040-1048.
CrossRef Google scholar
Zhang Z M, Ding H X, Dong X, . High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1010-1025.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/