Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling

Yancheng Zhang , Xu-Ping Li , Guangming Sun , Zeli Wang , Wenyong Duan

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 549 -562.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 549 -562. DOI: 10.1007/s12583-019-1222-0
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling

Author information +
History +
PDF

Abstract

The clinopyroxene amphibolite from the Bailang terrane is located in the central section of the Yarlung Zangbo suture zone (YZSZ), southern Tibet. The study of it is expected to provide important clues for the subduction of the Neo-Tethyan Ocean below the Asian Plate and thus for better understanding of the development of the India-Asia collision zone. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of the clinopyroxene amphibolite within a serpentinite mélange, four overprinted metamorphic stages are established. They are the first metamorphic record of M1 stage indicated by a relict assemblage of plagioclase+clinopyroxene+amphibole, an early M2 stage characterized by an assemblage of medium-grained clinopyroxene+amphibole+plagioclase+quartz as well as rutile inclusion in titanite, which is formed during burial process, an isobaric cooling M3 stage which is characterized by an assemblage of clinopyroxene+amphibole+plagioclase+titanite, and a decomposing retrograde stage M4, which is represented by the amphibolite+plagioclase symplectite+titanite+ rutile+quartz. By applying the THERMOCALC (versions 6.2 and 6.3) technique in the NCFMASHTO system, the P-T conditions estimated from M1 to M4 stages are ca. 8.6 kbar/880 °C, 10.8-13.4 kbar/800-840 °C, 12.7-13.2 kbar/650-660 °C and <11.2 kbar/640 °C, respectively. The mineral assemblages and their P-T conditions define a counterclockwise P-T path for the clinopyroxene amphibolite of the Xigaze ophiolite, suggesting that the rocks underwent a cooling process during burial from magmatic protolith, and a decompressing stage after the pressure peak metamorphic conditions, which implies that the Bailang terrane of the Xigaze ophiolite may have experienced subduction/collision-related tectonic processes. The peak metamorphism reaches to the transitional P-T conditions among amphibolite facies, granulite facies and eclogite facies with a burial depth of 30–40 km. After exhumation of the ophiolitic unit to the shallow crustal levels, the clinopyroxene amphibolite exposes to a high f O2 condition on the basis of the stable epidotebearing assemblage in the T-MO2 diagrams. A late subgreenschist facies overprinting subsequently occurs, the relevant mineral assemblage is prehnite+albite+chlorite+epidote+quartz.

Keywords

clinopyroxene amphibolite / thermodynamic modeling / P-T conditions / counterclock P-T path / Bailang terrane / Xigaze ophiolite / Tibet

Cite this article

Download citation ▾
Yancheng Zhang, Xu-Ping Li, Guangming Sun, Zeli Wang, Wenyong Duan. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 2019, 30(3): 549-562 DOI:10.1007/s12583-019-1222-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aitchison J C, Badengzhu, Davis A M. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 2000, 183(1/2): 231-244.

[2]

Aitchison J C, Davis A M. Evidence for the Multiphase Nature of the India-Asia Collision from the Yarlung Zangbo Suture Zone, Tibet. Geological Society, London, Special Publications, 2004, 226: 217-234.

[3]

Aitchison J C, Davis A M, Abrajevitch A V. Stratigraphic and Sedimentological Constraints on the Age and Tectonic Evolution of the Neotethyan Ophiolites along the Yarlung Tsangpo Suture Zone, Tibet. Geological Society, London, Special Publications, 2003, 218(1): 147-164.

[4]

Aitchison J C, McDermid I R C, Ali J R. Shoshonites in Southern Tibet Record Late Jurassic Rifting of a Tethyan Intraoceanic Island Arc. The Journal of Geology, 2007, 115(2): 197-213.

[5]

Allègre C J, Courtillot V, Tapponnier P. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 1984, 307(5946): 17-22.

[6]

Bédard, Hébert R, Guilmette C. Petrology and Geochemistry of the Saga and Sangsang Ophiolitic Massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an Arc-Back-Arc Origin. Lithos, 2009, 113(1/2): 48-67.

[7]

Bézard R, Hébert R, Wang C S. Petrology and Geochemistry of the Xiugugabu Ophiolitic Massif, Western Yarlung Zangbo Suture Zone, Tibet. Lithos, 2011, 125(1/2): 347-367.

[8]

Bhowmik S K, Ao A. Subduction Initiation in the Neo-Tethys: Constraints from Counterclockwise P-T Paths in Amphibolite Rocks of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 2016, 34(1): 17-44.

[9]

Coleman R G. Tectonic Setting for Ophiolite Obduction in Oman. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 2497-2508.

[10]

Dai J G, Wang C S, Polat A. Rapid Forearc Spreading between 130 and 120 Ma: Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Tibet. Lithos, 2013, 172(/173): 1-16.

[11]

Diener J F A, Powell R, White R W. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeOMgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 2007, 25(6): 631-656.

[12]

Dilek Y, Whitney D L. Counterclockwise P-T-t Trajectory from the Metamorphic Sole of a Neo-Tethyan Ophiolite (Turkey). Tectonophysics, 1997, 280(3/4): 295-310.

[13]

Ding L, Kapp P, Wan X Q. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 2005, 24 3 TC3001

[14]

Dubois-Côté V, Hébert R, Dupuis C. Petrological and Geochemical Evidence for the Origin of the Yarlung Zangbo Ophiolites, Southern Tibet. Chemical Geology, 2005, 214(3/4): 265-286.

[15]

Dupuis C, Hébert R, Dubois-Côté V. Petrology and Geochemistry of Mafic Rocks from Mélange and Flysch Units Adjacent to the Yarlung Zangbo Suture Zone, Southern Tibet. Chemical Geology, 2005, 214(3/4): 287-308.

[16]

Dupuis C, Hébert R, Dubois-Côté V. The Yarlung Zangbo Suture Zone Ophiolitic Mélange (Southern Tibet): New Insights from Geochemistry of Ultramafic Rocks. Journal of Asian Earth Sciences, 2005, 25(6): 937-960.

[17]

Dupuis C, Hébert R, Dubois-Côté V. Geochemistry of Sedimentary Rocks from Mélange and Flysch Units South of the Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 2006, 26(5): 489-508.

[18]

Girardeau J, Mercier J C C, Yougong Z. Origin of the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, Southern Tibet. Tectonophysics, 1985, 119(1/2/3/4): 407-433.

[19]

Green E C R, White R W, Diener J F A. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 2016, 34(9): 845-869.

[20]

Guilmette C, Hébert R, Dostal J. Discovery of a Dismembered Metamorphic Sole in the Saga Ophiolitic Mélange, South Tibet: Assessing an Early Cretaceous Disruption of the Neo-Tethyan Supra-Subduction Zone and Consequences on Basin Closing. Gondwana Research, 2012, 22(2): 398-414.

[21]

Guilmette C, Hébert R, Dupuis C. Metamorphic History and Geodynamic Significance of High-Grade Metabasites from the Ophiolitic Mélange beneath the Yarlung Zangbo Ophiolites, Xigaze Area, Tibet. Journal of Asian Earth Sciences, 2008, 32(5/6): 423-437.

[22]

Guilmette C, Hébert R, Wang C S. Geochemistry and Geochronology of the Metamorphic Sole Underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos, 2009, 112(1/2): 149-162.

[23]

Hébert R, Bézard R, Guilmette C. The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet: First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys. Gondwana Research, 2012, 22(2): 377-397.

[24]

Hébert R, Huot F, Wang C S. Yarlung Zangbo Ophiolites (Southern Tibet) Revisited: Geodynamic Implications from the Mineral Record. Geological Society, London, Special Publications, 2003, 218(1): 165-190.

[25]

Hébert R, Varfalvy V, Huot F. Yarlung Zangbo Ophiolites, Southern Tibet. Earth Science Frontier, 2000, 7: 124-126.

[26]

Hébert R, Wang C S, Varfalvy V. Yarlung Zangbo Suture Ophiolites and Their Supra-Subduction Zone Setting. Journal of Asian Earth Sciences, 2001, 19: 27-28.

[27]

Holland T J B, Powell R. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 2011, 29(3): 333-383.

[28]

Holland T J B, Powell R. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 2003, 145(4): 492-501.

[29]

Huot F, Hébert R, Varfalvy V. The Beimarang Mélange (Southern Tibet) Brings Additional Constraints in Assessing the Origin, Metamorphic Evolution and Obduction Processes of the Yarlung Zangbo Ophiolite. Journal of Asian Earth Sciences, 2002, 21(3): 307-322.

[30]

Johannes W, Schreyer W. Experimental Introduction of CO2 and H2O into Mg-Cordierite. American Journal of Science, 1981, 281(3): 299-317.

[31]

Leake B E, Woolley A R, Birch W D. Nomenclature of Amphiboles: Additions and Revisions to the International Mineralogical Association’s Amphibole Nomenclature. Mineralogical Magazine, 2004, 68(1): 209-215.

[32]

Li X-P, Chen H K, Wang Z L. Textural Evolution of Spinel Peridotite and Olivine Websterite in the Purang Ophiolite Complex, Western Tibet. Journal of Asian Earth Sciences, 2015, 110: 55-71.

[33]

Li X-P, Kong F M, Chen H K. Rodingite in the Purang Ophiolite and Its Geological Implication, Southwest Tibet. Acta Geologica Sinica—English Edition, 2015, 89(Suppl.2): 41-42.

[34]

Li X-P, Duan W Y, Zhao L Q. Rodingites from the Xigaze Ophiolite, Southern Tibet—New Insights into the Processes of Rodingitization. European Journal of Mineralogy, 2017, 29(5): 821-837.

[35]

Liu T, Wu F Y, Zhang L L. Zircon U-Pb Geochronological Constraints on Rapid Exhumation of the Mantle Peridotite of the Xigaze Ophiolite, Southern Tibet. Chemical Geology, 2016, 443: 67-86.

[36]

Mahoney J J, Frei R, Tejada M L G. Tracing the Indian Ocean Mantle Domain through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 1998, 39(7): 1285-1306.

[37]

Malpas J, Zhou M F, Robinson P T. Geochemical and Geochronological Constraints on the Origin and Emplacement of the Yarlung Zangbo Ophiolites, Southern Tibet. Geological Society, London, Special Publications, 2003, 218(1): 191-206.

[38]

Mo X X, Hou Z Q, Niu Y L. Mantle Contributions to Crustal Thickening during Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 2007, 96(1/2): 225-242.

[39]

Nicolas A. Structures of Ophiolites and Dynamics of Oceanic Lithosphere, 1989, London: Kluwer Academic Publisher, Dororecht, Boston, 1-369

[40]

Nicolas A, Girardeau J, Marcoux J. The Xigaze Ophiolite (Tibet): A Peculiar Oceanic Lithosphere. Nature, 1981, 294(5840): 414-417.

[41]

Pan G T, Wang L Q, Li R S. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 2012, 53: 3-14.

[42]

Robertson A H F. Overview of the Genesis and Emplacement of Mesozoic Ophiolites in the Eastern Mediterranean Tethyan Region. Lithos, 2002, 65(1/2): 1-67.

[43]

Sun G M L X-P, Duan W Y. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 2018, 29(5): 1026-1039.

[44]

Wakabayashi J, Dilek Y. What Constitutes ‘Emplacement’ of an Ophiolite? Mechanisms and Relationship to Subduction Initiation and Formation of Metamorphic Soles. Geological Society, London, Special Publications, 2003, 218(1): 427-447.

[45]

Wang R, Xia B, Zhou G Q. SHRIMP Zircon U-Pb Dating for Gabbro from the Tiding Ophiolite in Tibet. Chinese Science Bulletin, 2006, 51(14): 1776-1779.

[46]

Whitney D L, Evans B W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.

[47]

Wu F Y, Ji W Q, Wang J G. Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 2014, 314(2): 548-579.

[48]

Xia B, Yu H X, Chen G W. Geochemistry and Tectonic Environment of the Dagzhuka Ophiolite in the Yarlung-Zangbo Suture Zone, Tibet. Geochemical Journal, 2003, 37(3): 311-324.

[49]

Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.

[50]

Zhang X L X-P, Wang Z L. Mineralogical and Petrogeochemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 2016, 32(12): 3685-3702.

[51]

Zhou M F, Robinson P T, Malpas J. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 1996, 37(1): 3-21.

[52]

Zhu D C, Zhao Z D, Niu Y L. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 2013, 23(4): 1429-1454.

AI Summary AI Mindmap
PDF

257

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/