Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones

Yi Zhao , Jianping Zheng , Qing Xiong

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 666 -678.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 666 -678. DOI: 10.1007/s12583-019-1220-2
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones

Author information +
History +
PDF

Abstract

The orogenic peridotites can be subdivided into crust- and mantle-derived types. They record complex geological processes in subduction and collision zones. The crust-derived peridotites are derived from cumulates crystallized from ultramafic-mafic magmas in deep continental crust, an early mantle-crust interaction, prior to subduction. The mantle-derived orogenic peridotites are originated from subcontinental lithospheric mantle (SCLM) wedge and other mantle domains, and are later involved in the subduction channel and orogenic system. The mantle-derived peridotites usually record complex metasomatism, ultra-high pressure (UHP) metamorphism and mantle-crust interaction during the orogenic processes. Zircons are rarely found in orogenic peridotites. These zircons in orogenic peridotites are generally formed during metasomatism, they can be divided into old zircons (mainly the cores of residual magmatic and recrystallized) and newly grown zircons. Three key factors for zircon formation in orogenic peridotites are that: (1) zircon has strong crystallization ability, and Zr is easier to exchange Si in zircon crystal structure than other elements in the mantle; (2) metamorphic destruction of Zr-bearing minerals and precipitation of intergranular melts during the high-grade metamorphism can nucleate zircon under sub-solidus conditions; (3) the melts/fluids released from the subducted crust can metasomatize the mantle wedge to form zircons. In-situ studies on zircons and zircon inclusions enclosed in mantle minerals indicate that zircon can be an ideal indicator for mantle- crust interaction in subduction zones. The inclusions in zircons and Hf-O isotope of zircons are effective to reflect the composition of the melts/fluids, source properties, and the physical and chemical conditions. Dating of the zircons has been widely used in the studies of lithospheric evolution and crust-mantle interaction. During the complex processes of plate convergence, the orogenic peridotites can be subjected to the melt/fluid metasomatism, modifying the mineral and elemental compositions of peridotites. Thus, zircon is very useful to unravel the history of specific lithospheric mantle and the relationship between continental cratonic cores and their margins.

Keywords

orogenic peridotite / zircon / mantle-crust interaction / subduction zone

Cite this article

Download citation ▾
Yi Zhao, Jianping Zheng, Qing Xiong. Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones. Journal of Earth Science, 2019, 30(3): 666-678 DOI:10.1007/s12583-019-1220-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amelin Y, Lee D C, Halliday A N. Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 2000, 64(24): 4205-4225.

[2]

Ayers J C, de la Cruz K, Miller C, . Experimental Study of Zircon Coarsening in Quartzite±H2O at 1.0 GPa and 1 000 °C, with Implications for Geochronological Studies of High-Grade Metamorphism. American Mineralogist, 2003, 88(2/3): 365-376.

[3]

Bai W J, Zhou M F, Robinson P T. Origins of Podiform Chromite, Diamonds and Their Associated Minerals at Luobusa, Tibet, 2000, Beijing: Seismological Press, 98 (in Chinese with English Abstract

[4]

Bea F, Fershtater G B, Montero P, . Recycling of Continental Crust into the Mantle as Revealed by Kytlym Dunite Zircons, Ural Mts, Russia. Terra Nova, 2001, 13(6): 407-412.

[5]

Belousova E, Griffin W, O’Reilly S Y, . Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

[6]

Bingen B, Austrheim H, Whitehouse M J. Ilmenite as a Source for Zirconium during High-Grade Metamorphism? Textural Evidence from the Caledonides of Western Norway and Implications for Zircon Geochronology. Journal of Petrology, 2001, 42(2): 355-375.

[7]

Bodet F, Schärer U. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 2000, 64(12): 2067-2091.

[8]

Brueckner H K, Medaris L G. A Tale of Two Orogens—The Contrasting P-T-t History and Geochemical Evolution of Mantle in Ultrahigh-Pressure (UHP) Metamorphic Terranes of the Norwegian Caledonides and the Czech Variscides. Schweizerische Mineralogische and Petrographische Mutteilungen, 1998, 78: 293-307.

[9]

Brueckner H K, Medaris L G. A General Model for the Intrusion and Evolution of ?Mantle’ Garnet Peridotites in High-Pressure and Ultra-High- Pressure Metamorphic Terranes. Journal of Metamorphic Geology, 2000, 18(2): 123-133.

[10]

Carswell D A, Harvey M A, Al-Samman A. The Petrogenesis of Contrasting Fe-Ti and Mg-Cr Garnet Peridotite Types in the High Grade Gneiss Complex of Western Norway. Bulletin de Minéralogie, 1983, 106(6): 727-750.

[11]

Cao Y, Song S G, Su L, . Highly Refractory Peridotites in Songshugou, Qinling Orogen: Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, 2016, 252/253: 234-254.

[12]

Chazot G, Lowry D, Menzies M, . Oxygen Isotopic Composition of Hydrous and Anhydrous Mantle Peridotites. Geochimica et Cosmochimica Acta, 1997, 61(1): 161-169.

[13]

Chen R X, Zheng Y F, Xie L W. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous in-situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 2010, 114(1/2): 132-154.

[14]

Chen R X, Li H Y, Zheng Y F, . Crust-Mantle Interaction in a Continental Subduction Channel: Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet. Journal of Petrology, 2017, 58(2): 191-226.

[15]

Chen Y, Su B, Chu Z Y. Modification of an Ancient Subcontinental Lithospheric Mantle by Continental Subduction: Insight from the Maowu Garnet Peridotites in the Dabie UHP Belt, Eastern China. Lithos, 2017, 54-71.

[16]

Degeling H, Eggins S, Ellis D J. Zr Budgets for Metamorphic Reactions, and the Formation of Zircon from Garnet Breakdown. Mineralogical Magazine, 2001, 65(6): 749-758.

[17]

Ernst W G, Liou J G. Contrasting Plate-Tectonic Styles of the Qinling- Dabie-Sulu and Franciscan Metamorphic Belts. Geology, 1995, 23(4): 353-356.

[18]

Ernst W G. Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices—Implications for Arcs and Continental Growth. Physics of the Earth and Planetary Interiors, 2001, 253-275.

[19]

Evans B W. Metamorphism of Alpine Peridotite and Serpentinite. Annual Review of Earth and Planetary Sciences, 1977, 561: 397-447.

[20]

Fraser G, Ellis D, Eggins S. Zirconium Abundance in Granulite- Facies Minerals, with Implications for Zircon Geochronology in High-Grade Rocks. Geology, 1997, 25(7): 607-610.

[21]

Gebauer D. Basu A, Hart S. A P-T-t Path for a (Ultra-)High-Pressure Ultramafic/Mafic Rock Associations and Their Felsic Country-Rocks Based on SHRIMP- Dating of Magmatic and Metamorphic Zircon Domains. Example: Alpe Arami (Central Swiss Alps). Special AGU-Monograph Dedicated to Profs, 1996, Tilton and Tatsumoto: Earth Processes, 307-329.

[22]

Grieco G, Ferrario A, Quadt A V, . The Zircon-Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps): Evidence and Geochronology of a Metasomatized Mantle Slab. Journal of Petrology, 2001, 42(1): 89-101.

[23]

Griffin W L, Pearson N J, Belousova E, . The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

[24]

Griffin W L, Belousova E A, Shee S R, . Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 2004, 131(3/4): 231-282.

[25]

Goldfarb R J, Groves D I, Gardoll S. Orogenic Gold and Geologic Time: A Global Synthesis. Ore Geology Reviews, 2001, 18(1/2): 1-75.

[26]

Harrison T M, Watson E B. Kinetics of Zircon Dissolution and Zirconium Diffusion in Granitic Melts of Variable Water Content. Contributions to Mineralogy and Petrology, 1983, 84(1): 66-72.

[27]

Harrison T M, Watson E B, Aikman A B. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 2007, 35(7): 635-638.

[28]

Helmers H, Maaskant P, Hartel T H D. Garnet Peridotite and Associated High-Grade Rocks from Sulawesi, Indonesia. Lithos, 1990, 25(1/2/3): 171-188.

[29]

Hermann J, Rubatto D, Korsakov A, . Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 2001, 141(1): 66-82.

[30]

Hermann J, Rubatto D, Trommsdorff V. Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps). Mineralogy and Petrology, 2006, 88(1/2): 181-206.

[31]

Kadarusman A, Parkinson C D. Petrology and P-T Evolution of Garnet Peridotites from Central Sulawesi, Indonesia. Journal of Metamorphic Geology, 2000, 18(2): 193-209.

[32]

Katayama I, Muko A, Iizuka T, . Dating of Zircon from Ti- Clinohumite-Bearing Garnet Peridotite: Implication for Timing of Mantle Metasomatism. Geology, 2003, 31(8): 713-716.

[33]

Kinny P D, Mass R. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 327-341.

[34]

Knudsen T L, Griffin W, Hartz E, . In-situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland: A Record of Repeated Crustal Reworking. Contributions to Mineralogy and Petrology, 2001, 141(1): 83-94.

[35]

Li H Y, Chen R X, Zheng Y F, . The Crust-Mantle Interaction in Continental Subduction Channels: Zircon Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 687-712.

[36]

Li H Y, Chen R X, Zheng Y F, . Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel: Geochemical Evidence from Orogenic Peridotite in the Sulu Orogen. Journal of Geophysical Research: Solid Earth, 2018, 123(3): 2174-2198.

[37]

Li W C, Chen R X, Zheng Y F, . Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust: Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen. Lithos, 2013, 162/163: 157-174.

[38]

Li X P, Yang J S, Robinson P, . Petrology and Geochemistry of UHP-Metamorphosed Ultramafic-Mafic Rocks from the Main Hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), China: Fluid/Melt-Rock Interaction. Journal of Asian Earth Sciences, 2011, 42(4): 661-683.

[39]

Liati A, Franz L, Gebauer D, . The Timing of Mantle and Crustal Events in South Namibia, as Defined by SHRIMP-Dating of Zircon Domains from a Garnet Peridotite Xenolith of the Gibeon Kimberlite Province. Journal of African Earth Sciences, 2004, 39(3/4/5): 147-157.

[40]

Liati A, Gebauer D. Crustal Origin of Zircon in a Garnet Peridotite: A Study of U-Pb SHRIMP Dating, Mineral Inclusions and REE Geochemistry (Erzgebirge, Bohemian Massif). European Journal of Mineralogy, 2009, 21(4): 737-750.

[41]

Liou J G, Tsujimori T, Zhang R Y, . Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. International Geology Review, 2004, 46(1): 1-27.

[42]

Liou J G, Zhang R Y, Ernst W G. Very High-Pressure Orogenic Garnet Peridotites. Proceedings of the National Academy of Sciences, 2007, 104(22): 9116-9121.

[43]

Liou J G, Ernst W G, Zhang R Y, . Ultrahigh-Pressure Minerals and Metamorphic Terranes—The View from China. Journal of Asian Earth Sciences, 2009, 35(3/4): 199-231.

[44]

Liu F L, Liou J G. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 2011, 40(1): 1-39.

[45]

Lu F X, Wang Y, Chen M H, . Geochemical Characteristics and Emplacement Ages of the Mengyin Kimberlites, Shandong Province, China. International Geology Review, 1998, 40(11): 998-1006.

[46]

Maruyama S, Liou J G, Terabayashi M. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 1996, 38(6): 485-594.

[47]

Mattey D, Lowry D, Macpherson C. Oxygen Isotope Composition of Mantle Peridotite. Earth and Planetary Science Letters, 1994, 128(3/4): 231-241.

[48]

Medaris, L. G., Carswell, D. A., 1990. Petrogenesis of Mg-Cr Garnet Peridotites in European Metamorphic Belt. In: Carswell, D. A., ed., Eclogite Facies Rocks. Chapman & Hall, New York. 260–290

[49]

Medaris L G. Garnet Peridotites in Eurasian High-Pressure and Ultrahigh-Pressure Terranes: A Diversity of Origins and Thermal Histories. International Geology Review, 1999, 41(9): 799-815.

[50]

Nakajima Y. Ti-Clinohumite-Bearing Garnet Peridotite from Kumdykol Area in the Kokchetav UHP Complex, Northern Kazakhstan. Eos Transactions of the American Geophysical Union, 1998, 79.

[51]

O’Hara M J, Richardson S W, Wilson G. Garnet-Peridotite Stability and Occurrence in Crust and Mantle. Contributions to Mineralogy and Petrology, 1971, 32(1): 48-68.

[52]

Ota T, Gladkochub D P, Sklyarov E V, . P-T History of Garnet-Websterites in the Sharyzhalgai Complex, Southwestern Margin of Siberian Craton: Evidence for Paleoproterozoic High-Pressure Metamorphism. Precambrian Research, 2004, 132(4): 327-348.

[53]

Palme H, O’Neill H St O. Cosmochemical Constraints of Mantle Composition. Treatise on Geochemistry, 2003, 2: 1-38.

[54]

Patchett P J, Kouvo O, Hedge C E, . Evolution of Continental Crust and Mantle Heterogeneity: Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology, 1981, 78(3): 279-297.

[55]

Rubatto D, Gebauer D, Compagnoni R. Dating of Eclogite-Facies Zircons: The Age of Alpine Metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 1999, 167(3/4): 141-158.

[56]

Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 2002, 184(1/2): 123-138.

[57]

Rubatto D, Hermann J. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 2003, 67(12): 2173-2187.

[58]

Rumble D, Giorgis D, Ireland T, . Low δ18O Zircons, U-Pb Dating, and the Age of the Qinglongshan Oxygen and Hydrogen Isotope Anomaly near Donghai in Jiangsu Province, China. Geochimica et Cosmochimica Acta, 2002, 66(12): 2299-2306.

[59]

Scambelluri M, Hermann J, Morten L, . Meltversus Fluid-Induced Metasomatism in Spinel to Garnet Wedge Peridotites (Ulten Zone, Eastern Italian Alps): Clues from Trace Element and Li Abundances. Contributions to Mineralogy and Petrology, 2006, 151(4): 372-394.

[60]

Scambelluri M, Pettke T, Rampone E, . Petrology and Trace Element Budgets of High-Pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima Di Gagnone, Central Alps, Switzerland). Journal of Petrology, 2014, 55(3): 459-498.

[61]

Shen J, Li S G, Wang S J, . Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 2018, 503: 118-130.

[62]

Smith D, Griffin W L. Garnetite Xenoliths and Mantle-Water Interactions below the Colorado Plateau, Southwestern United States. Journal of Petrology, 2005, 46(9): 1901-1924.

[63]

Spengler D, Brueckner H K v, Roermund H L M, . Long-Lived, Cold Burial of Baltica to 200 km Depth. Earth and Planetary Science Letters, 2009, 281(1/2): 27-35.

[64]

Song S G, Su L. Rheological Properties of Mantle Peridotites at Yushigou in the North Qilian Mountains and Their Implications for Plate Dynamics. Acta Geologica Sinica—English Edition, 1998, 72(2): 131-141.

[65]

Song S G, Zhang L F, Niu Y L. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 2004, 898/9: 1330-1336.

[66]

Song S, Zhang L, Niu Y, . Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 2005, 234(1/2): 99-118.

[67]

Song S G, Su L, Niu Y L, . Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ultrahigh- Pressure Metamorphic Belt, Northwestern China. Lithos, 2007, 96(1/2): 243-265.

[68]

Su B, Chen Y, Guo S, . Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China. Lithos, 2016, 262: 266-284.

[69]

Su L, Song S G, Wang Z H. CH4-Rich Fluid Inclusions in the Yushigou Mantle Peridotite and Their Implications, North Qilian Mountains, China. Chinese Science Bulletin, 1999, 44(21): 1992-1995.

[70]

Tang M, Wang X L, Shu X J, . Hafnium Isotopic Heterogeneity in Zircons from Granitic Rocks: Geochemical Evaluation and Modeling of “Zircon Effect” in Crustal Anatexis. Earth and Planetary Science Letters, 2014, 389: 188-199.

[71]

Vavra G, Schmid R, Gebauer D. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 1999, 134(4): 380-404.

[72]

Vrijmoed J C, Austrheim H, John T, . Metasomatism in the Ultrahigh-Pressure Svartberget Garnet-Peridotite (Western Gneiss Region, Norway): Implications for the Transport of Crust-Derived Fluids within the Mantle. Journal of Petrology, 2013, 54(9): 1815-1848.

[73]

Watson E B. Dissolution, Growth and Survival of Zircons during Crustal Fusion: Kinetic Principals, Geological Models and Implications for Isotopic Inheritance. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1996, 87(1/2): 43-56.

[74]

Whitehouse M J, Platt J P. Dating High-Grade Metamorphism—Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 2003, 145(1): 61-74.

[75]

Whitney D L, Evans B W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.

[76]

Wu Y B, Zheng Y F, Zhao Z F, . U/Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 2006, 70(14): 3743-3761.

[77]

Xia Q K, Liu J, Liu S C, . High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere. Earth and Planetary Science Letters, 2013, 361: 85-97.

[78]

Xiong Q, Zheng J P, Griffin W L, . Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China): Meso- Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 2011, 187(1/2): 33-57.

[79]

Xiong Q, Zheng J P, Griffin W L, . Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. Journal of Petrology, 2014, 55(12): 2347-2376.

[80]

Xiong Q, Griffin W L, Zheng J P, . Episodic Refertilization and Metasomatism of Archean Mantle: Evidence from an Orogenic Peridotite in North Qaidam (NE Tibet, China). Contributions to Mineralogy and Petrology, 2015, 169(3): 1-24.

[81]

Xiong Q, Griffin W L, Zheng J P, . Southward Trench Migration at ~130–120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites. Earth and Planetary Science Letters, 2016, 438: 57-65.

[82]

Yang J J, Godard G, Kienast J R, . Ultrahigh-Pressure (60 kbar) Magnesite-Bearing Garnet Peridotites from Northeastern Jiangsu, China. The Journal of Geology, 1993, 101(5): 541-554.

[83]

Yang J J, Powell R. Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks. Journal of Metamorphic Geology, 2008, 26(6): 695-716.

[84]

Yang J S, Li T F, Chen S Z, . Genesis of Garnet Peridotites in the Sulu UHP Belt: Examples from the Chinese Continental Scientific Drilling Project-Main Hole, PP1 and PP3 Drillholes. Tectonophysics, 2009, 75(2): 359-382.

[85]

Yang Y H, Wu F Y, Wilde S A, . In situ Perovskite Sr-Nd Isotopic Constraints on the Petrogenesis of the Ordovician Mengyin Kimberlites in the North China Craton. Chemical Geology, 2009, 264(1/2/3/4): 24-42.

[86]

Ye K, Song Y R, Chen Y, . Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, ^E. China: Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction. Lithos, 2009, 109(3/4): 155-175.

[87]

Yu H, Zhang H F, Santosh M. Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China: A Fragment of Fossil Oceanic Lithosphere Mantle. Gondwana Research, 2017, 52: 1-17.

[88]

Zhang R Y, Liou J G, Yang J S. Petrochemical Constraints for Dual Origin of Garnet Peridotites from the Dabie-Sulu UHP Terrane, Eastern-Central China. Journal of Metamorphic Geology, 2000, 18(2): 149-166.

[89]

Zhang R Y, Yang J S, Wooden J L, . U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China: Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism. Earth and Planetary Science Letters, 2005, 237(3/4): 729-743.

[90]

Zhang R Y, Pan Y M, Yang Y H, . Chemical Composition and Ultrahigh-P Metamorphism of Garnet Peridotites from the Sulu UHP Terrane, China: Investigation of Major, Trace Elements and Hf Isotopes of Minerals. Chemical Geology, 2008, 255(1/2): 250-264.

[91]

Zhang Z M, Dong X, Liou J G, . Metasomatism of Garnet Peridotite from Jiangzhuang, Southern Sulu UHP Belt: Constraints on the Interactions between Crust and Mantle Rocks during Subduction of Continental Lithosphere. Journal of Metamorphic Geology, 2011, 29(9): 917-937.

[92]

Zhao Z F, Zheng Y F, Wei C S, . Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China. Chemical Geology, 2008, 253(3/4): 222-242.

[93]

Zheng J P, Zhang R Y, Griffin W L, . Heterogeneous and Metasomatized Mantle Recorded by Trace Elements in Minerals of the Donghai Garnet Peridotites, Sulu UHP Terrane, China. Chemical Geology, 2005, 221(3/4): 243-259.

[94]

Zheng J P, Griffin W L, O’Reilly S Y, . A Refractory Mantle Protolith in Younger Continental Crust, East-Central China: Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite. Geology, 2006, 34 9 705

[95]

Zheng J P, Griffin W L, O’Reilly S Y, . Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 2006, 47(11): 2233-2256.

[96]

Zheng J P, Sun M, Griffin W L, . Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China: Petrogenetic and Geodynamic Implications. Chemical Geology, 2008, 247(1/2): 282-304.

[97]

Zheng J P. Comparison of Mantle-Derived Matierals from Different Spatiotemporal Settings: Implications for Destructive and Accretional Processes of the North China Craton. Chinese Science Bulletin, 2009, 54(19): 3397-3416.

[98]

Zheng J P, Tang H Y, Xiong Q, . Linking Continental Deep Subduction with Destruction of a Cratonic Margin: Strongly Reworked North China SCLM Intruded in the Triassic Sulu UHP Belt. Contributions to Mineralogy and Petrology, 2014, 168 1 1028

[99]

Zheng J P, Xiong Q, Zhao Y, . Massif Peridotites from Subduction Zones: Records of Crust-Mantle Interaction. Science China Earth Sciences., 2019.

[100]

Zheng J P, Zhao Y, Xiong Q. Genesis and Geological Significance of Zircons in Orogenic Peridotite. Earth Science, 2019, 44(4): 1067-1082.

[101]

Zheng Y F. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Science Bulletin, 2008, 53(20): 3081-3104.

[102]

Zheng Y F. Fluid Regime in Continental Subduction Zones: Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 2009, 166(4): 763-782.

[103]

Zheng Y F. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 2012, 328: 5-48.

[104]

Zheng Y F, Chen R X, Xu Z, . The Transport of Water in Subduction Zones. Science China Earth Sciences, 2016, 59(4): 651-682.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/