Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya

Zhengbin Gou, Xin Dong, Baodi Wang

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 525-534.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 525-534. DOI: 10.1007/s12583-019-1219-8
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya

Author information +
History +

Abstract

The Himalayan leucogranites provide insights into the partial melting behavior of relatively deeper crustal rocks and tectono-magmatic history of the Himalayan Orogen. The Paiku leucogranites of northern Himalaya can be subdivided into two-mica leucogranite (TML), garnet-bearing leucogranite (GL), cordierite-bearing leucogranite (CL), and tourmaline-bearing leucogranite (TL). All of them are high-K, peraluminous, calc-alkalic to alkali-calcic rocks. They are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), and show pronounced negative anomalies of Sr, Ba, K and Ti, but positive anomalies of Nb and Rb. LA-ICP-MS U-Pb zircon dating of one TML, one GL and two CL samples yielded variable 206Pb/238U ages ranging from 23.6 to 16.1 Ma, indicating the Paiku leucogranites underwent a low degree of partial melting process. Combining with previous studies, we suggest the Paiku leucogranites were derived from partial melting of metasedimentary rocks of the Higher Himalayan Sequence (HHS). The GL and TL mainly resulted from the muscovite-dehydration melting, whereas the TML and CL were mainly derived from the biotite-dehydration melting. Finally, it is concluded that the Paiku leucogranites were probably formed during the subduction of the Indian crust.

Keywords

Paiku leucogranites / petrochemistry / U-Pb geochronology / dehydration melting / tectonic implications / northern Himalaya

Cite this article

Download citation ▾
Zhengbin Gou, Xin Dong, Baodi Wang. Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya. Journal of Earth Science, 2019, 30(3): 525‒534 https://doi.org/10.1007/s12583-019-1219-8

References

Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192(1/2): 59-79.
CrossRef Google scholar
Aikman A B, Harrison T M, Hermann J. Age and Thermal History of Eo- and Neohimalayan Granitoids, Eastern Himalaya. Journal of Asian Earth Sciences, 2012, 51: 85-97.
CrossRef Google scholar
Aoya M, Wallis S R, Terada K, . North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 2005, 33(11): 853-856.
CrossRef Google scholar
Booth A L, Zeitler P, Kidd W, . U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 2004, 304(10): 889-929.
CrossRef Google scholar
Braun I, Raith M, Kumar G R R. Dehydration-Melting Phenomena in Leptynitic Gneisses and the Generation of Leucogranites: A Case Study from the Kerala Khondalite Belt, Southern India. Journal of Petrology, 1996, 37(6): 1285-1305.
CrossRef Google scholar
Burchfiel B C, Royden L H. North-South Extension within the Convergent Himalayan Region. Geology, 1985, 13(10): 679-682.
CrossRef Google scholar
Clemens J D, Vielzeuf D. Constraints on Melting and Magma Production in the Crust. Earth and Planetary Science Letters, 1987, 86(2/3/4): 287-306.
CrossRef Google scholar
Clemens J D, Stevens G. Comment on ‘Water-Fluxed Melting of the Continental Crust: A Review’ by R. F. Weinberg and P. Hasalová. Lithos, 2015, 100-101.
Deniel C, Vidal P, Fernandez A, . Isotopic Study of the Ma-naslu Granite (Himalaya, Nepal): Inferences on the Age and Source of Himalayan Leucogranites. Contributions to Mineralogy and Petrology, 1987, 96(1): 78-92.
CrossRef Google scholar
Ding L, Kapp P, Wan X Q. Paleocene-Eocene Record of Ophio-lite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 2005, 24(3): 1-18.
CrossRef Google scholar
Edwards M A, Harrison T M. When did the Roof Collapse? Late Miocene North-South Extension in the High Himalaya Revealed by Th-Pb Mon-azite Dating of the Khula Kangri Granite. Geology, 1997, 25(6): 543-546.
CrossRef Google scholar
Frost B R, Barnes C G, Collins W J, . A Geochemical Classification for Granitic Rocks. Journal of Petrology, 2001, 42(11): 2033-2048.
CrossRef Google scholar
Gao L E, Zeng L S. Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 2014, 130: 136-155.
CrossRef Google scholar
Gao L E, Zeng L S, Hou K J, . Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 2013, 58(28/29): 3546-3563.
CrossRef Google scholar
Gao L E, Zeng L S, Xie K J. Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 2011, 57(36): 3078-3090. (in Chinese)
Gou Z B, Zhang Z M, Dong X, . Petrogenesis and Tectonic Implications of the Yadong Leucogranites, Southern Himalaya. Lithos, 2016, 300-310.
Groppo C, Rubatto D, Rolfo F, . Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 2010, 118(3/4): 287-301.
CrossRef Google scholar
Groppo C, Rolfo F, Indares A. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal: The Effect of Decompression and Implications for the ‘Channel Flow’ Model. Journal of Petrology, 2012, 53(5): 1057-1088.
CrossRef Google scholar
Guillot S, Le Fort P, Pêcher A, . Contact Metamorphism and Depth of Emplacement of the Manaslu Granite (Central Nepal). Implications for Himalayan Orogenesis. Tectonophysics, 1995, 241(1/2): 99-119.
CrossRef Google scholar
Guillot S, Le Fort P. Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites. Lithos, 1995, 35(3/4): 221-234.
CrossRef Google scholar
Guilmette C, Indares A, Hébert R. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 2011, 124(1/2): 66-81.
CrossRef Google scholar
Guo Z F, Wilson M. The Himalayan Leucogranites: Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 2012, 22(2): 360-376.
CrossRef Google scholar
Harris N, Inger S. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56.
CrossRef Google scholar
Harris N, Massey J, Inger S. The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 1993, 74(1): 391-400.
CrossRef Google scholar
Harris N, Massey J. Decompression and Anatexis of Himalayan Metape-lites. Tectonics, 1994, 13(6): 1537-1546.
CrossRef Google scholar
Harris N, Caddick M, Kosler J, . The Pressure-Temperature-Time Path of Migmatites from the Sikkim Himalaya. Journal of Metamorphic Geology, 2004, 22(3): 249-264.
CrossRef Google scholar
Harrison M T, Grove M, McKeegan K D, . Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya. Journal of Petrology, 1999, 40(1): 3-19.
CrossRef Google scholar
Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
CrossRef Google scholar
Hou Z Q, Zheng Y C, Zeng L S, . Eocene-Oligocene Granitoids in Southern Tibet: Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 2012, 349(350): 38-52.
CrossRef Google scholar
Huang C M, Zhao Z D, Li G M, . Leucogranites in Lhozag, Southern Tibet: Implications for the Tectonic Evolution of the Eastern Himalaya. Lithos, 2017, 246-262.
Icenhower J, London D. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 1995, 80(11/12): 1229-1251.
CrossRef Google scholar
Imayama T, Suzuki K. Carboniferous Inherited Grain and Age Zoning of Monazite and Xenotime from Leucogranites in Far-Eastern Nepal: Constraints from Electron Probe Microanalysis. American Mineralogist, 2013, 98(8/9): 1393-1406.
CrossRef Google scholar
Inger S, Harris N. Geochemical Constraints on Leucogranite Mag-matism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 1993, 34(2): 345-368.
CrossRef Google scholar
King J, Harris N, Argles T, . Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Geological Society of America Bulletin, 2011, 123(1/2): 218-239.
CrossRef Google scholar
Liu Y S, Hu Z C, Zong K Q, . Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
CrossRef Google scholar
Liu Z C, Wu F Y, Ji W Q, . Petrogenesis of the Ramba Leu-cogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 2014, 118-136.
Ludwig K R. Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel, 2003, 1-73.
Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 1989, 101(5): 635-643.
CrossRef Google scholar
Middlemost E A K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3/4): 215-224.
CrossRef Google scholar
Patino Douce A E, Harris N. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 1998, 39(4): 689-710.
CrossRef Google scholar
Patino Douce A E, Humphreys E D, Johnston A D. Anatexis and Metamorphism in Tectonically Thickened Continental Crust Exemplified by the Sevier Hinterland, Western North America. Earth and Planetary Science Letters, 1990, 97(3/4): 290-315.
CrossRef Google scholar
Paul A, Jung S, Romer R L, . Petrogenesis of Synorogenic High-Temperature Leucogranites (Damara Orogen, Namibia): Constraints from U-Pb Monazite Ages and Nd, Sr and Pb Isotopes. Gondwana Research, 2014, 25(4): 1614-1626.
CrossRef Google scholar
Rubatto D, Chakraborty S, Dasgupta S. Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology. Contributions to Mineralogy and Petrology, 2013, 165(2): 349-372.
CrossRef Google scholar
Scaillet B, France-Lanord C, Le Fort P. Badrinath-Gangotri Plu-tons (Garhwal, India): Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite. Journal of Volcanology and Geothermal Research, 1990, 44(1/2): 163-188.
CrossRef Google scholar
Schärer U. The Effect of Initial 230Th Disequilibrium on Young U-Pb Ages: The Makalu Case, Himalaya. Earth and Planetary Science Letters, 1984, 67(2): 191-204.
CrossRef Google scholar
Searle M P, Godin L. The South Tibetan Detachment and the Ma-naslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 2003, 111(5): 505-523.
CrossRef Google scholar
Searle M P, Szulc A G. Channel Flow and Ductile Extrusion of the High Himalayan Slab—The Kangchenjunga-Darjeeling Profile, Sikkim Himalaya. Journal of Asian Earth Sciences, 2005, 25(1): 173-185.
CrossRef Google scholar
Searle M P, Cottle J M, Streule M J, . Crustal Melt Granites and Migmatites along the Himalaya: Melt Source, Segregation, Transport and Granite Emplacement Mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100(1/2): 219-233.
CrossRef Google scholar
Sorcar N, Hoppe U, Dasgupta S, . High-Temperature Cooling Histories of Migmatites from the High Himalayan Crystallines in Sik-kim, India: Rapid Cooling Unrelated to Exhumation?. Contributions to Mineralogy and Petrology, 2014, 167(2): 1-34.
CrossRef Google scholar
Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
CrossRef Google scholar
Thompson A B, Connolly J A D. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and other Tectonic Settings. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15565-15579.
CrossRef Google scholar
Vielzeuf D, Holloway J R. Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 1988, 98(3): 257-276.
CrossRef Google scholar
Vielzeuf D, Montel J M. Partial Melting of Metagreywackes. Part I. Fluid-Absent Experiments and Phase Relationships. Contributions to Mineralogy and Petrology, 1994, 117(4): 375-393.
CrossRef Google scholar
Visonà D, Lombardo B. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leu-cogranite Genesis by Isobaric Heating?. Lithos, 2002, 62(3/4): 125-150.
CrossRef Google scholar
Wang L X, Ma C Q, Zhang C, . Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 2014, 147-163.
Wang X X, Zhang J J, Wang J M. Geochronology and Formation Mechanism of the Paiku Granite in Northern Himalaya, and Its Tectonic Implications. Earth Science, 2016, 41: 982-998. (in Chinese with English Abstract)
Wu F Y, Liu Z C, Liu X C, . Himalayan Leucogranites: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 2015, 31: 1-36. (in Chinese with English Abstract)
Yin A. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 2006, 76(1/2): 1-131.
CrossRef Google scholar
Zeng L S, Gao L E, Xie K J, . Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 2011, 303(3/4): 251-266.
CrossRef Google scholar
Zeng L S, Gao L E, Tang S H, . Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 2014, 412(1): 287-316.
CrossRef Google scholar
Zhang H F, Harris N, Parrish R, . U-Pb Ages of Kude and Sajia Leucogranites in Sajia Dome from North Himalaya and Their Geological Implications. Chinese Science Bulletin, 2004, 49 19 2017.
Zhang Z M, Dong X, Santosh M, . Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 2014, 25(1): 170-189.
CrossRef Google scholar
Zhang Z M, Xiang H, Dong X, . Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet. Lithos, 2015, 1-15.
Zhang Z M, Xiang H, Dong X, . Oligocene HP Metamor-phism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya. Gondwana Research, 2017, 41: 173-187.
CrossRef Google scholar
Zhang Z M, Kang D Y, Ding H X, . Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 2018, 43(1): 82-98. in Chinese with English Abstract)
CrossRef Google scholar
Zhang Z M, Ding H X, Dong X, . High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1010-1025.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/