High ${f_{{{\rm{H}}_2} - }}{f_{{{\rm{S}}_2}}}$ Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite
Fariba Padyar , Mohammad Rahgoshay , Alexander Tarantola , Marie-Camille Caumon , Seyed Mohammad Pourmoafi
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (3) : 523 -535.
High ${f_{{{\rm{H}}_2} - }}{f_{{{\rm{S}}_2}}}$ Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite
This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 °C and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low-T and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO2 in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO2 of −56.6 °C, and significant amounts of H2. Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H2 in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO2 in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ34S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ34S values calculated for H2S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.
Iran / Miduk porphyry / Latala / sphalerite / fluid inclusions / Raman spectroscopy / δ34S
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Bozkaya, G., Bozkaya, O., Banks, D., et al., 2017. Fluid Evolution of Mixed Base-Metal Gold Mineralization in the Tethys Belt: Koru Deposit, Turkey. 14th Binennial Meeting of Society for Geology Applied to Mineral Deposits. Aug. 20–23, 2017, Quebec City, Canada |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Cooke, D., Braxton, W. N., Rinne, M., 2015. Metal Transport and Ore Deposition in Porphyry Copper±Gold±Molybdenum Deposits-Contrasting Behaviour between Deep and Hallow Environments. SGA 50th Anniversary Meeting, Aug. 24–27, 2015, Nancy, France. 275–278 |
| [22] |
Daliran, F., Bakker, R. J., 2011. Metastable Melting Behavior in Fluid Inclusions in Sphalerite from the Angouran Zn(Pb) Deposit (NW Iran). European Current Research on Fluid Inclusions (ECROFI-XXI). Montanuniversität Leoben |
| [23] |
|
| [24] |
|
| [25] |
Dimitrijevic, M., 1973. Geology of Kerman Region. Institute for Geological and Mining Exploration and Institution of Nuclear and Other Mineral Raw Materials, Beograd-Yugoslavia. Geological Survey of Iran, Report No. Yu/52. 334 |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
Hedenquist., J. W., Claveria, R. J. R., Villafuerte, G. P., 2001. Types of Sulfide-Rich Epithermal Deposits, and Their Affiliation to Porphyry Systems: Lepanto-Victoria-Far Southeast Deposits, Philippines, as Examples. ProExplo Congreso, April 24–28, Lima, Perú. https://www.researchgate.net/publication/292437674 |
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
Murciego, A. M., Ayuso, E. A., Sanchez, A., et al., 2010. The Occurrence of Cd and Tl in the Sphalerite from El Losar del Barco Mine (Ávila, Spain): A Potential Environmental Hazard, Resumen SEM. |
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
/
| 〈 |
|
〉 |