Magnetic Fabric and Petrofabric of Amphibolites from the Namcha Barwa Complex, Eastern Himalaya

Wenjing Li , Haijun Xu , Junfeng Zhang

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (1) : 115 -125.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (1) : 115 -125. DOI: 10.1007/s12583-019-1021-7
Structural Geology

Magnetic Fabric and Petrofabric of Amphibolites from the Namcha Barwa Complex, Eastern Himalaya

Author information +
History +
PDF

Abstract

The magnetic fabric and petrofabric are often used as tectonic indicators of geological and geodynamic processes that a rock has experienced such as growth, deformation and metamorphism. This study presents the low field anisotropy of magnetic susceptibility (AMS) and the crystallographic preferred orientation (CPO) of constituent minerals in amphibolites from the Namcha Barwa Complex in the eastern Himalayan Syntaxis, Tibet. The bulk magnetic susceptibility varies significantly from 7.29×10−4 to 3.31×10−2 SI, with the Jelínek’s anisotropy values (P j) ranges from 1.094 to 1.463. The maximum susceptibility is approximately parallel to the lineation while the minimum susceptibility is subnormal to the foliation plane. Electron backscatter diffraction (EBSD) analyses show pronounced CPOs of amphibole in all samples, with a preferred alignment of the [001] axes along the lineation and the [100] axes spreading along a girdle normal to the lineation. Numerical simulations and comparison with laboratory measurements suggest that the magnetic anisotropy of amphibolite is largely controlled by the CPOs of amphibole. If present, the well oriented iron-titanium oxides such as ilmenite along rock foliation and lineation could increase the susceptibility and the anisotropy of a rock. Our results show a strong correlation between the magnetic anisotropy and the petrofabric of amphibolite, which could provide constraint for the interpretation of strong magnetic anomalies observed in the tectonic syntaxes of Tibet.

Keywords

petrofabric / anisotropy of magnetic susceptibility / crystallographic preferred orientation / amphibolite / Tibet

Cite this article

Download citation ▾
Wenjing Li, Haijun Xu, Junfeng Zhang. Magnetic Fabric and Petrofabric of Amphibolites from the Namcha Barwa Complex, Eastern Himalaya. Journal of Earth Science, 2020, 31(1): 115-125 DOI:10.1007/s12583-019-1021-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almqvist B S G, Mainprice D. Seismic Properties and Anisotropy of the Continental Crust: Predictions Based on Mineral Texture and Rock Microstructure. Reviews of Geophysics, 2017, 55(2): 367-433.

[2]

Biedermann A. Magnetic Anisotropy in Single Crystals: A Review. Geosciences, 2018, 8 8 302.

[3]

Biedermann A R, Koch C B, Pettke T, . Magnetic Anisotropy in Natural Amphibole Crystals.. American Mineralogist, 2015, 100(8/9): 1940-1951.

[4]

Biedermann A R, Kunze K, Hirt A M. Interpreting Magnetic Fabrics in Amphibole-Bearing Rocks. Tectonophysics, 2018, 722: 566-576.

[5]

Biedermann A R, Pettke T, Angel R J, . Anisotropy of Magnetic Susceptibility in Alkali Feldspar and Plagioclase. Geophysical Journal International, 2016, 205(1): 479-489.

[6]

Biedermann A R, Jackson M, Bilardello D, . Effect of Magnetic Anisotropy on the Natural Remanent Magnetization in the MCU IVe’ Layer of the Bjerkreim Sokndal Layered Intrusion, Rogaland, Southern Norway. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 790-807.

[7]

Booth A L, Zeitler P K, Kidd W S F, . U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 2004, 304(10): 889-929.

[8]

Booth A L, Chamberlain C P, Kidd W S F, . Constraints on the Metamorphic Evolution of the Eastern Himalayan Syntaxis from Geochronologic and Petrologic Studies of Namche Barwa. Geological Society of America Bulletin, 2009, 121(3/4): 385-407.

[9]

Borradaile G J, Henry B. Tectonic Applications of Magnetic Susceptibility and Its Anisotropy. Earth-Science Reviews, 1997, 42(1/2): 49-93.

[10]

Borradaile G J. Magnetic Fabrics and Petrofabrics: Their Orientation Distributions and Anisotropies. Journal of Structural Geology, 2001, 23(10): 1581-1596.

[11]

Borradaile G J, Jackson M. Structural Geology, Petrofabrics and Magnetic Fabrics (AMS, AARM, AIRM). Journal of Structural Geology, 2010, 32(10): 1519-1551.

[12]

Cao S Y, Liu J L, Leiss B. Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan, SW Yunnan, China. Journal of Structural Geology, 2010, 32(5): 606-622.

[13]

Chadima M, Hansen A K, Hirt A M, . Phyllosilicate Preferred Orientation as a Control of Magnetic Fabric: Evidence from Neutron Texture Goniometry and Low and High-Field Magnetic Anisotropy (SE Rhenohercynian Zone of Bohemian Massif). Geological Society, London, Special Publications, 2004, 238(1): 361-380.

[14]

Chung S L, Chu M F, Zhang Y Q, . Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 2005, 68(3/4): 173-196.

[15]

Ding L, Zhong D L. Metamorphic Characteristics and Geotectonic Implications of the High-Pressure Granulites from Namjagbarwa, Eastern Tibet. Science in China Series D: Earth Sciences, 1999, 42(5): 491-505.

[16]

Dunlop D J, ÖZdemir. Rock magnetism: Fundamentals and Frontiers (Vol. 3), 1997, Cambridge: Cambridge University Press

[17]

Geng Q R, Pan G T, Zheng L L, . The Eastern Himalayan Syntaxis: Major Tectonic Domains, Ophiolitic Mélanges and Geologic Evolution. Journal of Asian Earth Sciences, 2006, 27(3): 265-285.

[18]

GréGoire V, De Saint Blanquat M, NéDéLec A, . Shape Anisotropy Versus Magnetic Interactions of Magnetite Grains: Experiments and Application to AMS in Granitic Rocks. Geophysical Research Letters, 1995, 22(20): 2765-2768.

[19]

Hirt A M, Evans K F, Engelder T. Correlation between Magnetic Anisotropy and Fabric for Devonian Shales on the Appalachian Plateau. Tectonophysics, 1995, 247(1/2/3/4): 121-132.

[20]

Holland T, Blundy J. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 1994, 116(4): 433-447.

[21]

Hrouda F, Kahan S. The Magnetic Fabric Relationship between Sedimentary and Basement Nappes in the High Tatra Mountains, N. Slovakia. Journal of Structural Geology, 1991, 13(4): 431-442.

[22]

Hrouda F, Schulmann K, Suppes M, . Quantitive Relationship between Low-Field AMS and Phyllosilicate Fabric: A Review. Physics and Chemistry of the Earth, 1997, 22(1/2): 153-156.

[23]

Jelinek V. Characterization of the Magnetic Fabric of Rocks. Tectonophysics, 1981, 79(3/4): T63-T67.

[24]

Ji S C, Shao T B, Michibayashi K, . Magnitude and Symmetry of Seismic Anisotropy in Mica- and Amphibole-Bearing Metamorphic Rocks and Implications for Tectonic Interpretation of Seismic Data from the Southeast Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2015, 120(9): 6404-6430.

[25]

Kitamura K. Constraint of Lattice-Preferred Orientation (LPO) on V p Anisotropy of Amphibole-Rich Rocks. Geophysical Journal International, 2006, 165(3): 1058-1065.

[26]

Ko B, Jung H. Crystal Preferred Orientation of an Amphibole Experimentally Deformed by Simple Shear. Nature Communications, 2015, 6 6586.

[27]

Leake B E, Woolley A R, Arps C E S, . Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 1997, 61(405): 295-310.

[28]

Li Z Y, Zheng J P, Liu Q S, . Magnetically Stratified Continental Lower Crust Preserved in the North China Craton. Tectonophysics, 2015, 643: 73-79.

[29]

Li Z Y, Zheng J P, Moskowitz B M, . Magnetic Properties of Serpentinized Peridotites from the Dongbo Ophiolite, SW Tibet: Implications for Suture-Zone Magnetic Anomalies. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 4814-4830.

[30]

Liu Q S, Wang H C, Zheng J P, . Petromagnetic Properties of Granulite-Facies Rocks from the Northern North China Craton: Implications for Magnetic and Evolution of the Continental Lower Crust. Journal of Earth Science, 2013, 24(1): 12-28.

[31]

Liu Y, Zhong D. Petrology of High-Pressure Granulites from the Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 1997, 15(4): 451-466.

[32]

Liu Y, Zhong D L. Tectonic Framework of the Eastern Himalayan Syntaxis. Progress in Natural Science, 1998, 8(3): 366-370.

[33]

Mainprice D, Hielscher R, Schaeben H. Calculating Anisotropic Physical Properties from Texture Data Using the MTEX Open-Source Package. Geological Society, London, Special Publications, 2011, 360(1): 175-192.

[34]

Mainprice D, Humbert M. Methods of Calculating Petrophysical Properties from Lattice Preferred Orientation Data. Surveys in Geophysics, 1994, 15(5): 575-592.

[35]

Punturo R, Mamtani M A, Fazio E, . Seismic and Magnetic Susceptibility Anisotropy of Middle-Lower Continental Crust: Insights for Their Potential Relationship from a Study of Intrusive Rocks from the Serre Massif (Calabria, Southern Italy). Tectonophysics, 2017, 712/713: 542-556.

[36]

Robinson P, Heidelbach F, Hirt A M, . Crystallographic-Magnetic Correlations in Single-Crystal Haemo-Ilmenite: New Evidence for Lamellar Magnetism. Geophysical Journal International, 2006, 165(1): 17-31.

[37]

Schmidt V, Hirt A M, Leiss B, . Quantitative Correlation of Texture and Magnetic Anisotropy of Compacted Calcite-Muscovite Aggregates. Journal of Structural Geology, 2009, 31(10): 1062-1073.

[38]

Tatham D J, Lloyd G E, Butler R W H, . Amphibole and Lower Crustal Seismic Properties. Earth and Planetary Science Letters, 2008, 267(1/2): 118-128.

[39]

Tarling D H, Hrouda F. The Magnetic Anisotropy of Rocks, 1993, London: Chapman & Hall, 217.

[40]

Uyeda S, Fuller M D, Belshé J C, . Anisotropy of Magnetic Susceptibility of Rocks and Minerals. Journal of Geophysical Research, 1963, 68(1): 279-291.

[41]

Wang H C, Liu Q S, Zhao W H, . Magnetic Properties of Archean Gneisses from the Northeastern North China Craton: The Relationship between Magnetism and Metamorphic Grade in the Deep Continental Crust. Geophysical Journal International, 2015, 201(1): 486-495.

[42]

Xu H J, Jin Z M, Mason R, . Magnetic Susceptibility of Ultrahigh Pressure Eclogite: The Role of Retrogression. Tectonophysics, 2009, 475(2): 279-290.

[43]

Xu H J, Jin Z M, Ou X G. Anisotropy of Magnetic Susceptibility of the Cores from the Mainhole (100–2 000 m) of the Chinese Continental Scientific Drilling: Implications for the Ultrahigh-Pressure (UHP) Metamorphic Rocks. Acta Petrologica Sinica, 2006, 22(7): 2081-2088. (in Chinese with English Abstract)

[44]

Xu Z Q, Ji S C, Cai Z H, . Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya: Constraints from Deformation, Fabrics and Geochronology. Gondwana Research, 2012, 21(1): 19-36.

[45]

Xue Z H, Martelet G, Lin W, . Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights from Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling. Tectonics, 2017, 36(12): 3110-3134.

[46]

Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.

[47]

Zhang J F, Green H W II, Bozhilov K N. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth and Planetary Science Letters, 2006, 246(3/4): 432-443.

[48]

Zhang Z M, Zhao G C, Santosh M, . Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet: Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia. Journal of Metamorphic Geology, 2010, 28(7): 719-733.

[49]

Zhang Z M, Dong X, Santosh M, . Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet: Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 2012, 21(1): 123-137.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/