Early-Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt

Min Liu, Shaocong Lai, Da Zhang, Renzhi Zhu, Jiangfeng Qin, Yongjun Di

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (5) : 977-995.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (5) : 977-995. DOI: 10.1007/s12583-019-1015-5
Structural Geology and Thermochronology

Early-Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt

Author information +
History +

Abstract

The end-Permian to Early-Middle Triassic magmatic rocks in Inner Mongolia can provide valuable insights into the relationships between the collisional processes and the magmatic responses during the final orogenic evolution of Xing-Meng orogenic belt (XMOB). This paper presents zircon U-Pb ages and Hf isotopes, whole rock geochemical and Sr-Nd-Pb isotopic data for the Early-Middle Triassic diabases and monzogranites from the Langshan area, southwestern XMOB. Our results suggest that the studied diabases and monzogranites were respectively formed during Early Triassic and Middle Triassic. The Early Triassic diabases are characterized by “arc-like” geochemical signatures, including enrichment in Rb, U and K, and depletion in Nb, Ta, P and Ti. They have negative to weak positive εNd (t) values (−3.1 to +1.5) and relatively high initial ratios of 208Pb/204Pb (35.968–37.346), 207Pb/204Pb (15.448–15.508) and 206Pb/204Pb (16.280–17.492), indicating a subduction-metasomatized enriched lithospheric mantle source. Their low Ba/Rb (2.72–6.56), Ce/Y (0.97–1.39) and (Tb/Yb)N ratios (1.31–1.45) suggest that the parental magma was likely originated from low degree partial melting of the phlogopite-bearing lherzolite in a spinel-stability field. The Middle Triassic monzogranites show high Sr/Y ratios, low MgO, Cr and Ni contents, high Zr/Sm ratios (40–64), negative zircon ε Hf(t) values (−25.8 to −8.8), as well as relatively flat heavy rare earth element patterns. They were likely derived from low degree partial melting of a moderately thickened ancient lower crust. The diabases and the slightly postdated high Sr/Y granites in this study represent the magmatic responses to the final orogenic evolution in the southwestern XMOB. Together with regional works, we propose that the slab break-off of the Paleo-Asian oceanic lithosphere following the terminal collision between the North China Craton and the South Mongolia terranes triggered asthenospheric upwelling, and the ongoing convergence further initiated moderately crustal thickening and uplift in the XMOB.

Keywords

diabase / granite / high Sr/Y / Early-Middle Triassic / Xing-Meng orogenic belt / slab break-off

Cite this article

Download citation ▾
Min Liu, Shaocong Lai, Da Zhang, Renzhi Zhu, Jiangfeng Qin, Yongjun Di. Early-Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt. Journal of Earth Science, 2019, 30(5): 977‒995 https://doi.org/10.1007/s12583-019-1015-5

References

Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192(1/2): 59-79.
Atherton M P, Petford N. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 1993, 362(6416): 144-146.
Bao Z A, Chen L, Zong C L, . Development of Pressed Sulfide Powder Tablets for in situ Sulfur and Lead Isotope Measurement Using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 2017, 421: 255-262.
Boynton W V. Henderson P E. Cosmo chemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 1984, Amsterdam: Elsevier, 63-114.
Castillo P R. Adakite Petrogenesis. Lithos, 2012, 134/135(3): 304-316.
Castillo P R, Janney P E, Solidum R U. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 1999, 134(1): 33-51.
Cawood P A, Kröner A, Collins W J, . Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 2009, 318(1): 1-36.
Chen B, Ma X H, Liu A K, . Zircon U-Pb Ages of the Xil-inhot Metamorphic Complex and Blueschist and Implications for Tectonic Evolution of the Solonker Suture. Acta Petrologica Sinica, 2009, 25(12): 3123-3129.
Chung S L, Liu D Y, Ji J Q, . Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 2003, 31(11): 1021-1024.
Condie K C, Belousova E, Griffin W L, . Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 2009, 15(3/4): 228-242.
Darby B J, Ritts B D. Mesozoic Structural Architecture of the Lang Shan, North-Central China: Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 2007, 29(12): 2006-2016.
Davis G A, Xu B, Zheng Y D, . Indosinian Extension in the Solonker Suture Zone: The Sonid Zuoqi Metamorphic Core Complex, Inner Mongolia, China. Earth Science Frontiers, 2004, 11(3): 135-143.
de Jong K, Xiao W, Windley B F, . Ordovician 40Ar/39Ar Phengite Ages from the Blueschist-Facies Ondor Sum Subduction-Accretion Complex (Inner Mongolia) and Implications for the Early Paleozoic History of Continental Blocks in China and Adjacent Areas. American Journal of Science, 2006, 306(10): 799-845.
Defant M J, Drummond M S. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphère. Nature, 1990, 347(6294): 662-665.
Duggen S, Hoernle K, van den Bogaard P, . Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delami-nation of Subcontinental Lithosphère. Journal of Petrology, 2005, 46(6): 1155-1201.
Eizenhöfer P R, Zhao G C, Zhang J, . Final Closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from Geochronological and Geochemical Data of Permian Volcanic and Sedimentary Rocks. Tectonics, 2014, 33(4): 441-463.
Eizenhöfer P R, Zhao G C, Zhang J, . Geochemical Characteristics of the Permian Basins and Their Provenances Across the Solonker Suture Zone: Assessment of Net Crustal Growth during the Closure of the Palaeo-Asian Ocean. Lithos, 2015, 224/225: 240-255.
Ferrari L. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 2004, 32 1 77.
Foley S F, Jackson S E, Fryer B J, . Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lam-prophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cos-mochimica Acta, 1996, 60(4): 629-638.
Furman T, Graham D. Erosion of Limospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 1999, 48(1/2/3/4): 237-262.
Gao S, Liu X M, Yuan H L, . Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostan-dards and Geoanalytical Research, 2002, 26(2): 181-196.
Hart S R. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 1984, 309(5971): 753-757.
Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
Hu J M, Gong W B, Wu S J, . LA-ICP-MS Zircon U-Pb Dating of the Langshan Group in the Normeast Margin of the Alxa Block, with Tectonic Implications. Precambrian Research, 2014, 255: 756-770.
Ionov D A, Griffin W L, O’Reilly S Y. Volatile-Bearing Minerals and Limophile Trace Elements in the Upper Mantle. Chemical Geology, 1997, 141(3): 153-184.
Irvine T N, Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548.
Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2000, 91(1): 181-193.
Jian P, Liu D Y, Kröner A, . Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 2008, 101(3): 233-259.
Jian P, Liu D Y, Kröner A, . Evolution of a Permian Intrao-ceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 2010, 118(1): 169-190.
Jiang Y H, Jiang S Y, Ling H F, . Pedogenesis and Tectonic Implications of Late Jurassic Shoshonitic Lamprophyre Dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 2010, 100(3): 127-151.
Kay R W, Kay S M. Delamination and Delamination Magmatism. Tectonophysics, 1993, 219(1): 177-189.
Li H K, Geng J Z, Hao S, . The Study of Zircon U-Pb Dating by Means LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 2009.
Li S, Chung S L, Wilde S A, . Linking Magmatism with Collision in an Accretionary Orogen. Scientific Reports, 2016, 6 1 25751.
Li S, Wilde S A, Wang T, . Latest Early Permian Granitic Magmatism in Southern Inner Mongolia, China: Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Gond-wanaResearch, 2016, 29(1): 168-180.
Li S, Chung S L, Wilde S A, . Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens. Journal of Geophysical Research: Solid Earth, 2017, 163(6): 2291-2309.
Li S, Wilde S A, He Z H, . Triassic Sedimentation and Postaccretionary Crustal Evolution along the Solonker Suture Zone in Inner Mongolia, China. Tectonics, 2014, 33(6): 960-981.
Lin L N, Xiao W J, Wan B, . Geo chrono logic and Geo-chemical Evidence for Persistence of South-Dipping Subduction to Late Permian Time, Langshan Area, Inner Mongolia ^China): Significance for Termination of Accretionary Orogenesis in the Southern Al-taids. American Journal of Science, 2014, 314(2): 679-703.
Liu J F, Li J Y, Chi X G, . A Late-Carboniferous to Early Early-Permian Subduction-Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia: Evidence of Northward Subduction beneath the Siberian Paleoplate Southern Margin. Lithos, 2013, 177: 285-296.
Liu M, Zhang D, Xiong G Q, . Zircon U-Pb Age, Hf Isotope and Geochemistry of Carboniferous Intrusions from the Langshan Area, Inner Mongolia: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 2016, 120: 139-158.
Liu Y S, Wang X H, Wang D B, . Triassic High-Mg Ada-kitic Andésites from Linxi, Inner Mongolia: Insights into the Fate of the Paleo-Asian Ocean Crust and Fossil Slab-Derived Melt-Peridotite Interaction. Chemical Geology, 2012, 328: 89-108.
Liu Y. Geochemical and Chronological Characteristics of the Granitic Gneisses and Intrusive Rocks from Dongshengmiao Region, Inner Mongolia and Their Tectonic Implications: [Dissertation], 2012, Lanzhou: Lanzhou University, 1-4.
Ludwig K R. ISOPLOT 3.0: A Geo chrono logical Toolkit for Microsoft Excel, 2003, Special Publication, Berkeley: Geochronology Center, 4.
Luo Z W, Xu B, Shi G Z, . Solonker Ophiolite in Inner Mongolia, China: A Late Permian Continental Margin-Type Ophiolite. Lithos, 2016, 261: 72-91.
Ma L, Jiang S Y, Hofinann A W, . Lithospheric and As-thenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 2014, 124: 250-271.
Ma S W, Liu C F, Xu Z Q, . Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 2017, 28(2): 249-264.
Martin H, Smithies R H, Rapp R, . An Overview of Adakite, Tonalité-Trondhjemite-Granodiorite ^TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution. Lithos, 2005, 79(1): 1-24.
McKenzie D, Bickle M J. The Volume and Composition of Melt Generated by Extension of the Lithosphère. Journal of Petrology, 1988, 29(3): 625-679.
Miao L C, Fan W M, Liu D Y, . Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 2008, 32(5): 348-370.
Middlemost E A K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3): 215-224.
Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.
Peng R M, Zhai Y S, Li C S, . The Erbutu Ni-Cu Deposit in the Central Asian Orogenic Belt: A Permian Magmatic Sulfide Deposit Related to Boninitic Magmatism in an Arc Setting. Economic Geology, 2013, 108(8): 1879-1888.
Peng R M, Zhai Y S, Wang J P, . Discovery of Neopro-terozoic Acid Volcanic Rock in the South-Western Section of Langshan, Inner Mongolia. Chinese Science Bulletin, 2010, 55(26): 2611-2620.
Petford N, Atherton M. Na-Rich Partial Melts from Newly Under-plated Basaltic Crust: The Cordillera Bianca Batholith, Peru. Journal of Petrology, 1996, 37(6): 1491-1521.
Mineral Deposits, 2010, 29 3
Prouteau G, Scaillet B. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology, 2003, 44(12): 2203-2241.
Qian Q, Hermann J. Partial Melting of Lower Crust at 10–15 kbar: Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 2013, 165(6): 1195-1224.
Rapp R P, Shimizu N, Norman M D. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 2003, 425(6958): 605-609.
Rickwood P C. Boundary Lines wimin Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 1989, 22(4): 247-263.
Journal of Asian Earth Sciences, 1999, 17 4
Schulmann K, Paterson S. Asian Continental Growth. Nature Geo-science, 2011, 4(12): 827-829.
Song S G, Wang M M, Xu X, . Ophiolites in the Xing’an-Inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary Orogenic Events. Tectonics, 2015, 34(10): 2221-2248.
Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
Thirlwall M F, Smith T E, Graham A M, . High Field Strength Element Anomalies in Arc Lavas: Source or Process?. Journal of Petrology, 1994, 35(3): 819-838.
van de Zedde D M A, Wortel M J R. Shallow Slab Detachment as a Transient Source of Heat at Midlithospheric Depths. Tectonics, 2001, 20(6): 868-882.
Wang Q, Xu J F, Jian P, . Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 2006, 47(1): 119-144.
Wang Z J, Xu W L, Pei F P, . Geochronology and Geochemistry of Middle Permian-Middle Triassic Intrusive Rocks from Central-Eastern Jilin Province, NE China: Constraints on the Tectonic Evolution of the Eastern Segment of the Paleo-Asian Ocean. Lithos, 2015, 238: 13-25.
Wang Z Z, Han B F, Feng L X, . Geochronology, Geochemistry and Origins of the Paleozoic-Trias sic Plutons in the Lang-shan Area, Western Inner Mongolia, China. Journal of Asian Earth Sciences, 2015, 97: 337-351.
Wang Z Z, Han B F, Feng L X, . Tectonic Attribution of the Langshan Area in Western Inner Mongolia and Implications for the Neoarchean-Paleoproterozoic Evolution of the Western Norm China Craton: Evidence from LA-ICP-MS Zircon U-Pb Dating of the Langshan Basement. Lithos, 2016, 261: 278-295.
Wilde S A. Final Amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean Closure versus Paleo-Pacifïc Plate Subduction—A Review of the Evidence. Tectonophysics, 2015, 662: 345-362.
Windley B F, Alexeiev D, Xiao W J, . Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47.
Xiao W J, Windley B F, Hao J, . Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 2003, 22(6): 1-8.
Xiao W J, Windley B F, Sun S, . A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 477-507.
Xu B, Charvet J, Chen Y, . Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia ^China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 2013, 23(4): 1342-1364.
Yu Y, Sun M, Huang X L, . Sr-Nd-Hf-Pb Isotopic Evidence for Modification of the Devonian Limospheric Mantle beneath the Chinese Altai. Lithos, 2017, 285: 207-221.
Yuan H L, Gao S, Dai M N, . Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 2008, 247(1): 100-118.
Yuan H L, Gao S, Liu X M, . Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370.
Yuan W, Yang Z Y. The Alashan Terrane was not Part of North China by the Late Devonian: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 2015, 27(3): 1270-1282.
Zeng Q D, Yang J H, Zhang Z L, . Petrogenesis of the Yangchang Mo-Bearing Granite in the Xilamulun Metallogenic Belt, NE China: Geochemistry, Zircon U-Pb Ages and Sr-Nd-Pb Isotopes. Geological Journal, 2013, 49(1): 1-14.
Zhang J R, Wei C J, Chu H, . Mesozoic Metamorphism and Its Tectonic Implication along the Solonker Suture Zone in Central Inner Mongolia, China. Lithos, 2016, 261: 262-277.
Zhang J, Zhang B H, Zhao H. Timing of Amalgamation of the Alxa Block and the North China Block: Constraints Based on Detrital Zircon U-Pb Ages and Sedimentologic and Structural Evidence. Tec-tonophysics, 2016, 669: 65-81.
Zhang J, Li J Y, Xiao W J, . Kinematics and Geochronology of Multistage Ductile Deformation along the Eastern Alxa Block, NW China: New Constraints on the Relationship between the North China Plate and the Alxa Block. Journal of Structural Geology, 2013, 57: 38-57.
Zhang S H, Zhao Y, Davis G A, . Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratoni-zation. Earth-Science Reviews, 2014, 131: 49-87.
Zhang S H, Gao R, Li H Y, . Crustal Structures Revealed from a Deep Seismic Reflection Profile Across the Solonker Suture Zone of the Central Asian Orogenic Belt, Northern China: An Integrated Interpretation. Tectonophys ics, 2014, 612/613: 26-39.
Zhang S H, Zhao Y, Ye H, . Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 2014, 126(9): 1275-1300.
Zhang S H, Zhao Y, Song B, . Contrasting Late Carboniferous and Late Permian-Middle Triassic Intrusive Suites from the Northern Margin of the North China Craton: Geochronology, Petrogenesis, and Tectonic Implications. Geological Society of America Bulletin, 2009, 121: 181-200.
Zhang S H, Zhao Y, Liu X C, . Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block: Constraints on the Composition and Evolution of the Lithospheric Mantle. Lithos, 2009, 110(1): 229-246.
Zhang S H, Zhao Y, Ye H, . Early Mesozoic Alkaline Complexes in the Northern North China Craton: Implications for Cratonic Lithospheric Destruction. Lithos, 2012, 155: 1-18.
Zhang X B, Wang K Y, Wang C Y, . Age, Genesis, and Tectonic Setting of the Mo-W Mineralized Dongshanwan Granite Porphyry from the Xilamulun Metallogenic Belt, NE China. Journal of Earth Science, 2017, 28(3): 433-446.
Zhang X H, Mao Q, Zhang H F, . Mafic and Felsic Magma Interaction during the Construction of High-K Calc-Alkaline Plutons within a Metacratonic Passive Margin: The Early Permian Guyang Batholith from the Northern North China Craton. Lithos, 2011, 125(1/2): 569-591.
Zhao J H, Asimow P D. Neoproterozoic Boninite-Series Rocks in South China: A Depleted Mantle Source Modified by Sediment-Derived Melt. Chemical Geology, 2014, 388: 98-111.
Zhao X C, Zhou W X, Fu D, . Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China. Journal of Earth Science, 2018, 29(2): 280-294.
Zhou J B, Wilde S A. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Oogenic Belt. Gondwana Research, 2013, 23(4): 1365-1377.
Zindler A, Hart S R. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 1986, 14(1): 493-571.
Zou H B, Zindler A, Xu X S, . Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 2000, 171(1): 33-47.

Accesses

Citations

Detail

Sections
Recommended

/