Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China

Hongzhang Dai , Denghong Wang , Lijun Liu , Yang Yu , Jingjing Dai

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (4) : 707 -727.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (4) : 707 -727. DOI: 10.1007/s12583-019-1011-9
Article

Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China

Author information +
History +
PDF

Abstract

Strategic emerging minerals such as lithium, beryllium, niobium and tantalum are the most important rare metals currently, especially with the increasing demand of emerging industries on rare metals in China. The Jiajika deposit with a complete Li-Be-Nb-Ta metallogenic series is the largest pegmatite type rare metal deposit in China at present. In this paper, systematic researches of geochronology and petrogeochemistry were carried out to understand the genetic relationships between mine- ralization and magma evolution in the Jiajika deposit, which might be helpful to further rare-element prospecting in Songpan-Garze area. Zircon LA-ICP-MS U-Pb dating yields a concordia age of 217±1.1 Ma and a weighted mean 206Pb/238U age of 217±0.84 Ma for the aplite from the No. 308 pegmatite. Cassiterite LA-MC-ICPMS dating yields concordant ages of 211±4.6 Ma for the No. 308 pegmatite vein and 198±4.4 Ma for the No. 133 pegmatite vein, indicating that the rare metal mineralization mainly occurred in the Late Indosinian Period, further suggesting that the granites, aplites and pegmatites in Jiajika formed during a relatively stable stage after the intense orogeny of the Indosinian cycle. The rare metal-bearing granitic rocks and pegmatites show a clear linear relationship between A/CNK and A/NK and are enriched in total alkalis and depleted in CaO, FeO, MnO, MgO, Ba and Sr. All barren rocks and mineralized rocks feature similar rare earth element and trace element geochemical patterns. Thus, these characteristics indicate that the aplites and pegmatites represent the highly differentiated products of the two-mica granite (MaG) in this area, which is the most likely parent magma. During the evolution of magma, strong alkali metasomatism occurred between the melt phase and the volatile-rich fluid phase; as a result, large-scale rare metal mineralization occurred in certain structural zones of the pegmatite veins in the Jiajika deposit.

Keywords

granitic pegmatites / rare metals / metallogenic epoch / geochemical characterization / Jiajika

Cite this article

Download citation ▾
Hongzhang Dai, Denghong Wang, Lijun Liu, Yang Yu, Jingjing Dai. Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China. Journal of Earth Science, 2019, 30(4): 707-727 DOI:10.1007/s12583-019-1011-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ayres L D, Averill S A, Wolfe W J. An Archean Molybdenite Occurrence of Possible Porphyry Type at Setting Net Lake, Northwestern Ontario, Canada. Economic Geology, 1982, 77(5): 1105-1119.

[2]

Badanina E V, Syritso L F, Volkova E V, . Composition of Li-F Granite Melt and Its Evolution during the Formation of the Ore-Bearing Orlovka Massif in Eastern Transbaikalia. Petrology, 2010, 18(2): 131-157.

[3]

Ballouard C, Poujol M, Boulvais P, . Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 2016, 44(3): 231-234.

[4]

Bau M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous System. Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333.

[5]

Bezmen N I, Gorbachev P N. Experimental Investigations of Superliquidus Phase Separation in Phosphorus-Rich Melts of Li-F Granite Cupolas. Petrology, 2014, 22(6): 574-587.

[6]

BGMRSP Bureau of GeologyMineral Resources of Sichuan Province Regional Geology of Sichuan Province, 1991, Beijing (in Chinese): Geological Publishing House

[7]

Blevin P L. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold-Rich Ore Systems. Resource Geology, 2004, 54(3): 241-252.

[8]

Bouseily A M, Sokkary A A. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 1975, 16(3): 207-219.

[9]

Breaks F W, Moore JR J M. The Ghost Lake Batholith, Superior Province of Northwestern Ontario: A Fertile, S-type, Peraluminous Granite-Rare-Element Pegmatite System. Canadian Mineralogist, 1992, 30(3): 835-875.

[10]

Castro A, Patiño Douce A E, Corretgé L G, . Origin of Peraluminous Granites and Granodiorites, Iberian Massif, Spain: An Experimental Test of Granite Petrogenesis. Contributions to Mineralogyand Petrology, 1999, 135(2/3): 255-276.

[11]

Černý P. The Tanco Pegmatite at Bernic Lake, Southeastern Manitoba. Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada: Short Course Handbook, 1982, 8: 527-543.

[12]

Černý P. Rare-Element Granitic Pegmatites. Part I: Anatomy and Internal Evolution of Pegmatite Deposits. Geoscience Canada, 1991, 18(2): 49-67.

[13]

Černý P. Rare-Element Granitic Pegmatites. Part II: Regional to Global Environments and Petrogenesis. Geoscience Canada, 1991, 18(2): 68-81.

[14]

Černý P. Fertile Granites of Precambrian Rare-Element Pegmatite Fields: Is Geochemistry Controlled by Tectonic Setting or Source Lithologies?. Precambrian Research, 1991, 429-468.

[15]

Černý P, Blevin P L, Cuney M, . Granite-Related Ore Deposits. Economic Geology, 2005, 107: 383-384.

[16]

Černý P, Ercit T S. The Classification of Granitic Pegmatites Revisited. Canadian Mineralogist, 2005, 43(6): 2005-2026.

[17]

Černý P, Ercit T S, Vanstone P J. Mineralogy and Petrology of the Tanco Rare-Element Pegmatite Deposit, Southeastern Manitoba. Archives of Biochemistry and Biophysics, 1998, 185(1): 156-164.

[18]

Chappell B W. Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 1999, 46(3): 535-551.

[19]

Chen Z H, Wang D H, Gong Y F, . 40Ar-39Ar Isotope Dating of Muscovite from Jingerquan Pegmatite Rare Metal Deposit in Hami, Xinjiang, and Its Geological Significance. Mineral Deposits, 2013, 25(4): 470-476.

[20]

Clark G S, Černý P. Radiogenic 87Sr, Its Mobility, and the Interpretation of Rb-Sr Fractionation Trends in Rare-Element Granitic Pegmatites. Geochimica et Cosmochimica Acta, 1987, 51(4): 1011-1018.

[21]

Cui Y R, Xue J R, Chen F, . The Reseach Advances in LA-(MC)-ICP-MS U-Pb Dating of Cassiterite. Acta Geologica Sinica, 2017, 91(6): 1386-1399.

[22]

Dai H Z, Wang D H, Liu L J, . Geochronology, Geochemistry and Their Geological Significances of No. 308 Pegmatite Vein in the Jiajika Deposit, Western Sichuan, China. Earth Science, 2018, 43(10): 3664-3681.

[23]

Earth Science: Journal of China University of Geosciences, 1994, 19 2

[24]

Dill H G. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 2015, 417-561.

[25]

Du L T. Geochemical Principle of Alkaline Metasomatism. Sciencein China: Series B, 1986, 29(7): 754-770.

[26]

Eby G N, Woolley A R, Din V, . Geochemistry and Petrogenesis of Nepheline Syenites: Kasungu-Chipala, Ilomba, and Ulindi Nepheline Syenite Intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology, 1998, 39(8): 1405-1424.

[27]

Ercit T S. Linnen R L, Samson I M. REE-Enriched Granitic Pegmatites. Rare-Element Geochemistry and Ore Deposits. Geological Association of Canada Short Course Notes, 2004, 257-296.

[28]

Fei G C, Yuan T J, Tang W C, . Classification Analysis of Rare Metal Ore Bearing Pegmatite in Ke’eryin, Sichuan Province. Mineral Deposits, 2014, 33: 187-188.

[29]

Fu X F, Hou L W, Liang B, . Metallogenic Model and 3D Prospecting Model for the Jiajika Granitic Pegmatite Type Lithium Deposit, 2017, Beijing: Science Press

[30]

Grasso V G. The TiO2 Frequency in Volcanic Rocks. Geologische Rundschau, 1968, 57(3): 930-935.

[31]

Hao X F, Fu X F, Liang B, . Formation Ages of Granite and X03 Pegmatite Vein in Jiajika, Western Sichuan, and Their Geological Significance. Mineral Deposits, 2015, 34(6): 1199-1208.

[32]

Hou J L, Li J K, Wang D H, . The Composition and Metallogenic Significance of Micas from Jiajika Two-Mica Granite, Sichuan Province. Earth Science, 2018, 43(S2): 119-134.

[33]

Hou J L, Li J K, Zhang Y J, . Li Isotopic Composition and Its Constrains on Rare Metal Mineralization of Jiajika Two-Mica Granite, Sichuan Province. Earth Science, 2018, 43(6): 2042-2054.

[34]

Hu S X. Metasomatic Altered Rock Petrography, 1980, Beijing: Geological Publishing House

[35]

Imeokparia E G. Geochemical Aspects of the Evolution and Mineralization of the Amo Younger Granite Complex (Northern Nigeria). Chemical Geology, 1983, 40(3/4): 293-312.

[36]

Jahn B M, Capedvila R, Liu D, . Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 2004, 23(5): 629-653.

[37]

Jahns R H. Internal Evolution of Pegmatite Bodies. In: Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada: Short Course Handbook, 1982, 8: 293-346.

[38]

Kalsbeek F, Jepsen H F, Nutman A P. From Source Migmatites to Plutons: Tracking the Origin of Ca. 435 Ma S-Type Granites in the East Greenland Caledonian Orogen. Lithos, 2001, 57(1): 1-21.

[39]

Koester E, Pawley A R, Fernandes L A D, . Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil. Journal of Petrology, 2002, 43(8): 1595-1616.

[40]

Lehmann B. Metallogeny of Tin, 1990, Berlin: Springer-Verlag, 1-211.

[41]

Leng C B, Wang S X, Gou T Z, . A Review of the Research on the Koktokay No. 3 Granitic Pegmatite Dyke, Altai, Xinjiang. Geology and Mineral Resources of South China, 2007, 89(1): 14-20.

[42]

Li H Q, Chen F W. Geochronology of Regional Metallogeny in Xinjiang, China, 2004, Beijing: Beijing Science and Technology Press, 1-391.

[43]

Li J K. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China: [Dissertation], 2006, Wuhan: China University of Geosciences

[44]

Li J K, Chou I M. An Occurrence of Metastable Cristobalite in Spodumene-Hosted Crystal-Rich Inclusions from Jiajika Pegmatite Deposit, China. Journal of Geochemical Exploration, 2016, 171: 29-36.

[45]

Li J K, Chou I M. Homogenization Experiments of Crystal-Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond-Anvil Cell. Geofluids, 2017, 1-12.

[46]

Li J K, Chou I M, Yuan S, . Observations on the Crystallization of Spodumene from Aqueous Solutions in a Hydrothermal Diamond-Anvil Cell. Geofluids, 2013, 13: 467-474.

[47]

Li J K, Liu S B, Wang D H, . Metallogenic Epoch of Xuebaoding W-Sn-Be Deposit in Northwest Sichuan and Its Tectonic Tracing Significance. Mineral Deposits, 2007, 26(5): 557-562.

[48]

Li J K, Liu X F, Wang D H. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 2014, 88(12): 2269-2283.

[49]

Li J K, Wang D H, Chen Y C. The Ore-Forming, Mechanism of the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan Province: Evidence from Isotope Dating. Acta Geologica Sinica: English Edition, 2013, 87(1): 91-101.

[50]

Li J K, Wang D H, Liu S B, . SRXRF Microprobe Study of Fluid Incluisions for Pegmatite Deposits in Western Sichuan Province. Geoteconical et Metallogenica, 2008, 32(3): 332-337.

[51]

Li J K, Wang D H, Zhang D H, . The Source of Ore-Forming Fluid in Jiajika Pegmatite Type Lithium Polymetallic Deposit, Sichuan Province. Acta Petrologoca et Mineralogica, 2006, 25(1): 45-52.

[52]

Li J K, Wang D H, Zhang D H, . The Discovery of Silicate Daughter Mineral-Bearing Inclusions in the Jiajika Pegmatite Deposit, Western Sichuan, and Its Significance. Mineral Deposits, 2006, 25(S1): 131-134.

[53]

Li J K, Wang D H, Zhang D H, . Mineralization Mechanism and Continental Dynamics Background of Pegmatite Type Deposit, Southern Sichuan Province, 2007, Beijing: Atomic Energy Press, 59-97.

[54]

Li X T, Yan D P, Qiu L. Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-Alkaline to Alkaline Basalts in Xiqiu Area, Southwest China. Journal of Earth Science, 2018, 29(1): 57-77..

[55]

Liu F, Zhang Z X, Li Q, . New Age Constraints on Koktokay Pegmatite No. 3 Vein, Altay Mountains, Xinjiang: Evidence from Molybdenite Re-Os Dating. Mineral Deposits, 2012, 31(5): 1111-1118.

[56]

Liu L J, Fu X F, Wang D H, . Geological Characteristics and Metallogeny of Jiajika-Style Rare Metal Deposits. Mineral Deposits, 2015, 34(6): 1187-1198.

[57]

Liu L J, Wang D H, Hou K J, . Application of Lithium Isotope to Jiajika New No. 3 Pegmatite Lithium Polymetallic Vein in Sichuan. Earth Science Frontiers, 2017, 24(5): 167-171.

[58]

Liu L J, Wang D H, Hou K J, . Geochemical characteristics of REE and Its implications to X03 Super-Large Lithium Pegmatite Vein, Jiajika, Sichuan. Earth Science, 2017, 42(10): 1673-1683.

[59]

Liu Y J, Ma D S. Vein-Type Tungsten Deposits of China and Adjoining Regions. Ore Geology Reviews, 1993, 8(3/4): 233-246.

[60]

Liu Y S, Gao S, Hu Z C, . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.

[61]

London D. Internal Differentiation of Rare-Element Pegmatites: Effects of Boron, Phosphorus, and Fluorine. Geochimica et Cosmochimica Acta, 1987, 51(3): 403-420.

[62]

London D. Internal Differentiation of Rare-Element Pegmatites: A Synthesis of Recent Research. Geological Society of America Special Papers, 1990, 1: 35-50.

[63]

London D. Granitic Pegmatites: An Assessment of Current Concepts and Directions for the Future. Lithos, 2005, 80(1/2/3/4): 281-303.

[64]

Ludwig K R. Isoplot/Ex Version 3.00. A Geochronological Toolkit for Microsoft Excel, 2003, Berkeley: Berkeley Geochronology Center, 1-70.

[65]

Martin R F, Vito C D. The Patterns of Enrichment in Felsic Pegmatites Ultimately Dependon Tectonic Setting. Canadian Mineralogist, 2005, 43(6): 2027-2048.

[66]

Middlemost E A K. Naming Materials in the Magma/Igneous Rock System. Earth Science Reviews, 1994, 37(3/4): 215-224.

[67]

Nguyen T A, Yang X Y, Thi H V, . Piaoac Granites Related W-Sn Mineralization, Northern Vietnam: Evidences from Geochemistry, Zircon Geochronology and Hf Isotopes. Journal of Earth Science, 2019, 30(1): 52-69.

[68]

Nizamoff J W, Falster A U, Simmons W B, . Phosphate Mineralogy of NYF-, LCT-, and Mixed-Type Granitic Pegmatites. Canadian Mineralogist, 1999, 37: 853-854.

[69]

Norton J J. Sequence of Mineral Assemblages in Differentiated Granitic Pegmatites. Economic Geology, 1983, 78(5): 854-874.

[70]

Novák M, Škoda R, Gadas P, . Contrasting Origin of the Mixed (NYF+LCT) Signature in Granitic Pegmatites, with Examples from the Moldanubian Zone, Czech Republic. Canadian Mineralogist, 2012, 50(4): 1077-1094.

[71]

Pan M, Tang Y, Xiao R Q, . The Discovery of the Superlarge Li Ore Vein X03 in the Jiajika Ore District. Acta Geological Sichuan, 2016, 36(3): 422-425.

[72]

Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956-983.

[73]

Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

[74]

Petford N, Atherton M. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 1996, 37(6): 1491-1521.

[75]

Pezzotta F. East Hampton C T. Madagascar’s Rich Pegmatite Districts: A General Classification. Extra Lapis English No. 1, Madagascar. Lapis International, 2001, 34-35.

[76]

Journal of Earth Science, 2019, 30 4

[77]

Qin Y L, Hao X F, Xu Y F, . Metallogenic Regularity and Prospecting Criteria of Granite Type Rare Metal Deposits in Jiajika Area, Sichuan Province. Geological Survey of China, 2015, 2(7): 35-39.

[78]

Rittmann A. On the Serial Character of Igneous Rocks. Egyptian Journal of Geology, 1957, 1: 23-48.

[79]

Roger F, Jolivet M, Malavieille J. The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 2010, 39(4): 254-269.

[80]

Roger F, Malavieille J, Leloup P H, . Timing of Granite Emplacement and Cooling in the Songpan-Garzê Fold Belt (Eastern Tibetan Plateau) with Tectonic Implications. Journal of Asian Earth Sciences, 2004, 22(5): 465-481.

[81]

Saleh G M. Rare Metal-Bearing Pegmatites from the Southeastern Desert of Egypt. Geology, Geochemical Characteristics, and Petrogenesis. Chinese Journal of Geochemistry, 2007, 26(1): 8-22.

[82]

Shi C Y. Abundance of Chemical Elements of Granitoids in China, 2008, Beijing: Geological PublishingHouse

[83]

Sigoyer J D, Vanderhaeghe O, Duchêne S, . Generation and Emplacement of Triassic Granitoids within the Songpan Ganze Accretionary-Orogenic Wedge in a Context of Slab Retreat Accommodated by Tear Faulting, Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 2014, 192-216.

[84]

Srivastava P K, Sinha A K. Geochemical Characterization of Tungsten-Bearing Granites from Rajasthan, India. Journal of Geochemical Exploration, 1997, 60(2): 173-184.

[85]

Stemprok M. Mineralized Granites and Their Origin. Episodes, 1979.

[86]

Su A N, Tian S H, Hou Z Q, . Lithium Isotope and Its Application to Jiajika Pegmatite Type Lithium Polymetallic Deposit in Sichuan. Geoscience, 2011, 25(2): 236-242.

[87]

Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[88]

Sylvester P J. Post-Collisional Strongly Peraluminous Granites. Lithos, 1998, 29-44.

[89]

Tang G F, Wu S X. Geological Study Report of Jiajika Granite- Pegmatite Type Li Deposit in Kangding, Sichuan. Inner Report, 1984.

[90]

Thomas R, Förster H J, Rickers K, . Formation of Extremely F-Rich Hydrous Melt Fractions and Hydrothermal Fluids During Differentiation of Highly Evolved Tin-Granite Magmas: A Melt/Fluid-Inclusion Study. Contributions to Mineralogy and Petrology, 2005, 148(5): 582-601.

[91]

Tischendorf G. Geochemical and Petrographic Criteria of Silicic Magmatic Rocks Associated with Rare Metal Mineralization. Metallization Associated With Acid Magmatism, 1977, 2: 41-96.

[92]

Tkachev A V. Evolution of Metallogeny of Granitic Pegmatites Associated with Orogens Throughout Geological Time. Geological Society, London, Special Publications, 2011, 350(1): 7-23.

[93]

Wang C Y, Han W B, Wu J P, . Crustal Structure Beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 2007, 112 B7 07307

[94]

Wang D H, Chen Y C, Xu Z G, . Metallogenic Series and Metallogenic Regularity of Altai Metallogenic Province, 2002, Beijing: Atomic Energy Press, 1-492.

[95]

Wang D H, Li J K, Fu X F. 40Ar/39Ar Dating for the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan and Its Significance. Geochimica, 2005, 34(6): 541-547.

[96]

Wang D H, Liu L J, Dai H Z, . Discussion on Particularity and Prospecting Direction of Large and Super-Large Spodumene Deposits. Earth Science, 2017, 42(12): 2243-2257.

[97]

Wang D H, Liu L J, Hou J L, . A Prime Review on Application of “Five Levels+Basement” Model for Jiajika-Style Rare Metal Deposits. Earth Science Frontiers, 2017, 24(5): 1-7.

[98]

Wang Q W, Wang K M, Kan Z Z, . Granite and Its Mineralization Series in Western Sichuan, 2008, Beijing: Geological Publishing House

[99]

Wang Z P, Liu S B, Ma S C, . Metallogenic Regularity, Deep and Periphery Prospecting of Dangba Superlarge Spodumene Deposit in Aba, Sichuan Province. Earth Science, 2018, 43(6): 2029-2041.

[100]

Weislogel A L. Tectonostratigraphic and Geochronologic Constraints on Evolution of the Northeast Paleotethys from the Songpan-Ganzi Complex, Central China. Tectonophysics, 2008, 451(1/2/3/4): 331-345.

[101]

Wen C H, Chen J F, Luo X Y, . Geochemical Features of the Chuanziyuan Rare Metal Pegmatite in Northeastern Hunan, China. Bulletin of Mineralogy, Petrology and Geocheistry, 2016, 35(1): 171-177.

[102]

Yang X M. Using the Rittmann Serial Index to Define the Alkalinity of Igneous Rocks. Neues Jahrbuch für Mineralogie-Abhandlungen. Journal of Mineralogy and Geochemistry, 2007, 184(1): 95-103.

[103]

Yuan C, Zhou M F, Sun M, . Triassic Granitoids in the Eastern Songpan Ganzi Fold Belt, SW China: Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 2010, 290(3/4): 481-492.

[104]

Yuan S D, Peng J T, Hao S, . In Situ LA-MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 2011, 43(1): 235-242.

[105]

Yuan Z X, Bai G. Temporal and Spatial Distribution of Endogenic Rare and Rare Earth Mineral Deposit of China. Mineral Deposits, 2001, 20(4): 347-354.

[106]

Zhang H F, Parrish R, Zhang L, . A-Type Granite and Adakitic Magmatism Association in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Implication for Lithospheric Delamination. Lithos, 2007, 97(3/4): 323-335.

[107]

Zhang H F, Zhang L, Harris N, . U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Constraints on Petrogenesis and Tectonic Evolution of the Basement. Contributions to Mineralogy and Petrology, 2006, 152(1): 75-88.

[108]

Zhang L F, Zhang D Y, Ouyang H W, . Technique for Separating Magnesium and Lithium from Salt Lake Brine with High Mg/Li Ratio. Mining and Metaliurgical Engineering, 2016, 36(4): 83-87.

[109]

Zhang Y, Chen P R. Characteristics of Granitic Pegmatite with High-Purity Quartz in Spruce Pine Region, USA and Altay Region of Xinjiang, China. Geological Journal of China Universities, 2010, 16(4): 426-435.

[110]

Zhao Y X, Zhao G M, Zeng Y F. Geological Features and Gentic Model for the Granitic Pegmatite Type (Jiajika Type) Li Deposit in West Sichuan—By the Example of the Jiajika Li Deposit. Acta Geologica Sichuan, 2015, 35(3): 391-395.

[111]

Zhou J T, Wang X Y, Li Z M, . Geological Characteristics and Metallogenic Mechanism of the Toupi Granitic Pegmatite Type Spodumene Deposit in Guangchang County Jiangxi Province. Journal of East China Institute of Technology: Natural Science, 2012, 35(4): 378-387.

[112]

Zou T R, Li Q C. Rare and Rare Earth Metal Deposits in Xinjiang, China, 2006, Beijing: Geological Publishing House

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/