Geochemistry and Petrogenesis of the ca. 2.5 Ga High-K Granitoids in the Southern North China Craton

Lei Li, Wenjian Zhai

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 647-665.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (3) : 647-665. DOI: 10.1007/s12583-019-0895-8
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Geochemistry and Petrogenesis of the ca. 2.5 Ga High-K Granitoids in the Southern North China Craton

Author information +
History +

Abstract

Archean high-K granitoids, generally formed after tonalite-trondhjemite-granodiorite (TTGs), are important for understanding crustal reworking of ancient cratons. The Linshan Archean high-K granitoids from the southern Trans-North China Orogen (TNCO) provide a window into the continental crustal evolution of the North China Craton (NCC). They mainly consist of monzogranite and granodiorite which were formed during 2 542–2 503 Ma. The high-K granitoids have high SiO2 (65.86 wt.%–78.08 wt.%), K2O (3.29 wt.%–7.62 wt.%) and low P2O5 (0.01 wt.%–0.27 wt.%). They display right inclined REE patterns with negative Eu anomalies (Eu/Eu*=0.20–0.81). Their spider diagram is characterized by enrichment of Rb, K, Th, U and depletion of Nb, Ta, Zr, Ti. The rocks have positive and variable zircon e Hf(t) (+2.5 to +6.6) and whole-rock e Nd(t) (+0.7 to +4.5) with two-stage model ages (T DM2 Hf=2.87–2.64 Ga; T DM2 Nd=2.77–2.50 Ga) similar to those of the Archean TTG-type rocks, amphibolites and diorites in the area. These evidences suggest that the high-K granitoids were produced by partial melting of juvenile crustal rocks. The Linshan high-K granitoids show relatively high whole-rock zircon saturation temperatures (694–889 ºC) and low Sr/Y ratios (0.27–21.1), indicating low pressure partial melting. Combined with other geological evidences, the Linshan high-K granitoids are suggested to have been produced by partial melting of the continental crust in a post-collision extensional environment after an arc-continent collision. Thus, the NCC did not amalgamate together until ca. 2.5 Ga. Compiled zircon U-Pb ages and Hf isotopes reveal that the ca. 2.5 Ga magmatism represents reworking of the continental crust.

Keywords

granitoids / petrogenesis / Neoarchean / North China Craton

Cite this article

Download citation ▾
Lei Li, Wenjian Zhai. Geochemistry and Petrogenesis of the ca. 2.5 Ga High-K Granitoids in the Southern North China Craton. Journal of Earth Science, 2019, 30(3): 647‒665 https://doi.org/10.1007/s12583-019-0895-8

References

Anhaeusser, C. R., 2014. Archaean Greenstone Belts and Associated Granitic Rocks—A Review. Journal of African Earth Sciences, 100. 684–732. https://doi.org/10.1016/j.jafrearsci.2014.07.019
Belousova E A, Kostitsyn Y A, Griffin W L, . The Growth of the Continental Crust: Constraints from Zircon Hf-Isotope Data. Lithos, 2010, 119(3/4): 457-466.
Boily M, Leclair A, Maurice C, . Paleo- to Mesoarchean Basement Recycling and Terrane Definition in the Northeastern Superior Province, Québec, Canada. Precambrian Research, 2009, 168(1/2): 23-44.
Cao Z Q, Zhai W J, Jiang X F, . About 2.5 Ga Tectono-Metamorphic Event in Southern Margin of North China Craton and Its Significance. Earth Science, 2016, 41(4): 570-585.
Cawthorn R G, Strong D F, Brown P A. Origin of Corundum-Normative Intrusive and Extrusive Magmas. Nature, 1976, 259(5539): 102-104.
Chappell B B, White A J R. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1/2): 1-26.
Chappell B W. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplo Granites. Lithos, 1999, 46(3): 535-551.
Chappell B W, White A J R. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 2001, 48(4): 489-499.
Chen A X, Zhou D, Zhang Q K, . Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia. Journal of Earth Science, 2018, 29(1): 78-92.
Chen C, X B, Wu C M, . Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science, 2018, 29(1): 114-129.
Chen N H-C, Zhao G C, Jahn B M, . U-Pb Zircon Ages and Hf Isotopes of ≈2.5 Ga Granitoids from the Yinshan Block, North China Craton: Implications for Crustal Growth. Precambrian Research, 2017, 303: 171-182.
Chen H X, Wang H Y C, Peng T, . Petrogenesis and Geochronology of the Neoarchean–Paleoproterozoic Granitoid and Monzonitic Gneisses in the Taihua Complex: Episodic Magmatism of the Southwestern Trans-North China Orogen. Precambrian Research, 2016, 287: 31-47.
Chu N C, Taylor R N, Chavagnac V, . Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 2002, 17(12): 1567-1574.
Conly A G, Brenan J M, Bellon H, . Arc to Rift Transitional Volcanism in the Santa Rosalía Region, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research, 2005, 142(3/4): 303-341.
Deng H, Kusky T, Polat A, . A 2.5 Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 2016, 275: 241-264.
Diwu C R, Sun Y, Guo A L, . Crustal Growth in the North China Craton at ≈2.5Ga: Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 2011, 20(1): 149-170.
Diwu C R, Sun Y, Lin C L, . LA-(MC)-ICPMS U-Pb Zircon Geochronology and Lu-Hf Isotope Compositions of the Taihua Complex on the Southern Margin of the North China Craton. Chinese Science Bulletin, 2010, 55(23): 2557-2571.
Dong M M, Wang C M, Yao E Y, . LA-ICP-MS Zircon U-Pb Geochronology of the Taihua Complex in Lushan Area of Henan Province and Its Geological Implications. Acta Petrologica et Mineralogica, 2018, 37(1): 1-18.
Eby G N. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 1990, 26(1/2): 115-134.
Eby G N. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 1992, 20 7 641.
Faure M, Trap P, Lin W, . Polyorogenic Evolution of the Paleoproterozoic Trans-North China Belt—New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 2007, 30(2): 95-106.
Farahat E S, Mohamed H A, Ahmed A F, . Origin of I- And A-Type Granitoids from the Eastern Desert of Egypt: Implications for Crustal Growth in the Northern Arabian-Nubian Shield. Journal of African Earth Sciences, 2007, 49(1/2): 43-58.
Frost B R, Barnes C G, Collins W J, . A Geochemical Classification for Granitic Rocks. Journal of Petrology, 2001, 42(11): 2033-2048.
Frost C D, Frost B R, Kirkwood R, . The Tonalite-Trondhjemite-Granodiorite (TTG) to Granodiorite-Granite (GG) Transition in the Late Archean Plutonic Rocks of the Central Wyoming Province. Canadian Journal of Earth Sciences, 2006, 43(10): 1419-1444.
Frost C D, McLaughlin J F, Frost B R, . Hadean Origins of Paleoarchean Continental Crust in the Central Wyoming Province. Geological Society of America Bulletin, 2017, 129(3/4): 259-280.
Gardiner N J, Hickman A H, Kirkland C L, . Processes of Crust Formation in the Early Earth Imaged through Hf Isotopes from the East Pilbara Terrane. Precambrian Research, 2017, 297: 56-76.
Geng J Z, Qiu K F, Gou Z Y, . Tectonic Regime Switchover of Triassic Western Qinling Orogen: Constraints from LA-ICP-MS Zircon U-Pb Geochronology and Lu-Hf Isotope of Dangchuan Intrusive Complex in Gansu, China. Geochemistry, 2017, 77(4): 637-651.
Geng Y S, Du L L, Ren L D. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 2012, 21(2/3): 517-529.
Guo L S, Liu S W, Liu Y L, . Zircon Hf Isotopic Features of TTG Gneisses and Formation Environment of Precambrian Sushui Complex in Zhongtiao Moutains. Acta Petrologica Sinica, 2008, 24(1): 139-148.
He X H, Zhong H, Zhao Z F, . U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling. Journal of Earth Science, 2018, 29(4): 920-938.
Hou K J, Li Y H, Zou T R, . Laser Ablation-MC-ICPMS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 2007, 23(10): 2595-2604.
Huang Q W, Shi Y, Liu M H, . Geochronology and Geochemistry of the Shahewan and Caoping Granites in South Qinling and Their Significance. Earth Science, 2018, 43(Suppl.2): 83-101.
Huang X L, Wilde S A, Yang Q J, . Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiong’er in the Southern Segment of the Trans-North China Orogen: Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 2012, 134/135: 236-252.
Huang X L, Wilde S A, Zhong J W. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 2013, 233: 337-357.
Jia X L. Research for Taihua Complex in Xiaoqinling and Lushan Areas: Implications for the Evolution of the Crystalline Basement in Southern North China Craton: [Dissertation], 2016, Xi’an: Northwest University, 25-170.
Ju Y J, Zhang X L, Lai S C, . Permian–Triassic Highly-Fractionated I-Type Granites from the Southwestern Qaidam Basin (NW China): Implications for the Evolution of the Paleo-Tethys in the Eastern Kunlun Orogenic Belt. Journal of Earth Science, 2017, 28(1): 51-62.
Kusky T M, Li J H. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 2003, 22(4): 383-397.
Kusky T M. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 2011, 20(1): 26-35.
Kusky T M, Polat A, Windley B F, . Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 2016, 162: 387-432.
Kumar K V, Ernst W G, Leelanandam C, . Origin of ≈2.5 Ga Potassic Granite from the Nellore Schist Belt, SE India: Textural, Cathodoluminescence, and SHRIMP U-Pb Data. Contributions to Mineralogy and Petrology, 2011, 162(4): 867-888.
Li J H, Niu X L, Kusky T M, . Neoarchean Plate Tectonic Evolution of North China and Its Correlation with Global Cratonic Blocks. Earth Science Frontiers, 2004, 11(3): 273-283.
Liu D Y, Nutman A P, Compston W, . Remnants of =3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 1992, 20(4): 339-342.
Liu D Y, Wan Y S, Wu J S, . Eoarchean Rocks and Zircons in the North China Craton. Earth’s Oldest Rocks. Developments in Precambrian Geology, 2007, 15: 251-273.
Liu D Y, Wilde S A, Wan Y S, . Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean–Early Neoarchean. Chemical Geology, 2009, 261(1/2): 140-154.
Liu D Y, Wilde S A, Wan Y S, . New U-Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton. American Journal of Science, 2008, 308(3): 200-231.
Liu Y S, Gao S, Hu Z C, . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.
Lu J S, Wang G D, Wang H, . Metamorphic Evolution of the Lushan Terrane in the Precambrian Taihua Complex, Henan Province. Acta Petrologica Sinica, 2014, 30(10): 3062-3074.
Lu J S, Wang G D, Wang H, . Zircon SIMS U-Pb Geochronology of the Lushan Terrane: Dating Metamorphism of the Southwestern Terminal of the Palaeoproterozoic Trans-North China Orogen. Geological Magazine, 2015, 152(2): 367-377.
Ludwig K R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, 2003, Berkeley: Berkeley Geochronology Center
Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids. Geological Society of American Bulletin, 1989, 101(5): 635-643.
Middlemost E A K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3/4): 215-224.
Morel M L A, Nebel O, Nebel-Jacobsen Y J, . Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS. Chemical Geology, 2008, 255(1/2): 231-235.
Moyen J F, Martin H. Forty Years of TTG Research. Lithos, 2012, 148: 312-336.
Patchett P J, Tatsumoto M. Lu-Hf Total-Rock Isochron for the Eucrite Meteorites. Nature, 1980, 288(5791): 571-574.
Patiño Douce A E. Vapor-Absent Melting of Tonalite at 15–32 kbar. Journal of Petrology, 2004, 46(2): 275-290.
Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956-983.
Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.
Pfänder J A, Münker C, Stracke A, . Nb/Ta and Zr/Hf in Ocean Island Basalts—Implications for Crust-Mantle Differentiation and the Fate of Niobium. Earth and Planetary Science Letters, 2007, 254(1/2): 158-172.
Qiu J S, Xiao E, Hu J, . Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Acta Petrologica Sinica, 2008, 24(11): 2468-2484.
Rudnick R L, Gao S. Rudnick R L. Composition of the Continental Crust. Treatise on Geochemistry. The Crust, vol. 3, 2003, Amsterdam: Elsevier, 1-64.
Santosh M. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 2010, 178(1/2/3/4): 149-167.
Shen Q H, Qian X L. Archean Rock Associations, Episodes and Tectonic Evolution of China. Acta Geoscientia Sinica, 1995, 16(2): 113-120.
Sun Q Y, Zhou Y Y, Wang W, . Formation and Evolution of the Paleoproterozoic Meta-Mafic and Associated Supracrustal Rocks from the Lushan Taihua Complex, Southern North China Craton: Insights from Zircon U-Pb Geochronology and Whole-Rock Geochemistry. Precambrian Research, 2017, 303: 428-444.
Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
Tang L, Santosh M. Neoarchean Granite-Greenstone Belts and Related Ore Mineralization in the North China Craton: An Overview. Geoscience Frontiers, 2018, 9(3): 751-768.
Tian W, Liu S W, Liu C H, . Zircon SHRIMP Geochronology and Geochemistry of TTG Rocks in Sushui Complex from Zhongtiao Mountains with Its Geological Implications. Progress in Natural Science, 2006, 16(5): 492-500.
Trap P, Faure M, Lin W, . Late Paleoproterozoic (1 900–1 800 Ma) Nappe Stacking and Polyphase Deformation in the Hengshan-Wutaishan Area: Implications for the Understanding of the Trans-North-China Belt, North China Craton. Precambrian Research, 2007, 156(1/2): 85-106.
Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222/223: 191–211. https://doi.org/10.1016/j.precamres.2011.09.008
Verma S K, Verma S P, Oliveira E P, . LA-SF-ICP-MS Zircon U-Pb Geochronology of Granitic Rocks from the Central Bundelkhand Greenstone Complex, Bundelkhand Craton, India. Journal of Asian Earth Sciences, 2016, 118: 125-137.
Wan Y S, Liu D Y, Wang S Y, . Early Precambrian Crustal Evolution in the Dengfeng Area, Henan Province (Eastern China): Constraints from Geochemistry and SHRIMP U-Pb Zircon Dating. Acta Geologica Sinica, 2009, 83(7): 982-999.
Wan Y S, Liu D Y, Wang W, . Provenance of Meso- to Neoproterozoic Cover Sediments at the Ming Tombs, Beijing, North China Craton: An Integrated Study of U-Pb Dating and Hf Isotopic Measurement of Detrital Zircons and Whole-Rock Geochemistry. Gondwana Research, 2011, 20(1): 219-242.
Wan Y S, Dong C Y, Liu D Y, . Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton: A Review. Precambrian Research, 2012, 222/223: 265-289.
Wan Y S, Dong C Y, Xie H Q, . Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 2015, 36(6): 685-700.
Wang A D, Liu Y C. Neoarchean (2.5–2.8 Ga) Crustal Growth of the North China Craton Revealed by Zircon Hf Isotope: A Synthesis. Geoscience Frontiers, 2012, 3(2): 147-173.
Wang G D, Wang H Y C, Chen H X, . Geochronology and Geochemistry of the TTG and Potassic Granite of the Taihua Complex, Mts. Huashan: Implications for Crustal Evolution of the Southern North China Craton. Precambrian Research, 2017, 288: 72-90.
Wang Z J, Shen Q H, Wan Y S. SHRIMP U-Pb Zircon Geochronology of the Shipaihe “Metadiorite Mass” from Dengfeng County, Henan Province. Acta Geoscientica Sinica, 2004, 25(3): 295-298.
Watkins J M, Clemens J D, Treloar P J. Archaean TTGs as Sources of Younger Granitic Magmas: Melting of Sodic Metatonalites at 0.6–1.2 GPa. Contributions to Mineralogy and Petrology, 2007, 154(1): 91-110.
Windley B F. The Evolving Continents (Third Edition), 1995, Chichester: John Wiley and Sons, 377-385.
Wu F Y, Zhao G C, Wilde S A, . Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 2005, 24(5): 523-545.
Wu F Y, Yang Y H, Xie L W, . Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 2006, 234(1/2): 105-126.
Wu F Y, Li X H, Yang J H, . Discussion on the Petrogenesis of Granites. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.
Wu F Y, Liu X C, Ji W Q, . Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 2017, 60(7): 1201-1219.
Xu H J, Zhang J F. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 2018, 29(1): 30-42.
Yang Y H, Zhang H F, Chu Z Y, . Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 2010, 290(2/3): 120-126.
Yu S Q, Liu S W, Tian W, . SHRIMP Zircon U-Pb Chronology and Geochemistry of the Henglingguan and Beiyu Granitoids in the Zhongtiao Mountains, Shanxi Province. Acta Geologica Sinica—English Edition, 2006, 80(6): 912-924.
Zeh A, Gerdes A, Barton J M Jr.. Archean Accretion and Crustal Evolution of the Kalahari Craton—The Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology, 2009, 50(5): 933-966.
Zen E A. Aluminum Enrichment in Silicate Melts by Fractional Crystallization: Some Mineralogic and Petrographic Constraints. Journal of Petrology, 1986, 27(5): 1095-1117.
Zhai M G, Bian A G, Zhao T P. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China Series D: Earth Sciences, 2000, 43(Suppl.1): 219-232.
Zhai M G, Guo J H, Liu W J. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review. Journal of Asian Earth Sciences, 2005, 24(5): 547-561.
Zhai M G, Santosh M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 2011, 20(1): 6-25.
Zhai M G. Multi-Stage Crustal Growth and Cratonization of the North China Craton. Geoscience Frontiers, 2014, 5(4): 457-469.
Zhang H, Sun F Y. U-Pb Geochronology and Hf Isotope Geochemistry of the Zircon from Huping Complex in Tongshan Area of Zhongtiaoshan Mountains and Its Geologic Implications. Journal of Jilin University (Earth Science Edition), 2012, 42(3): 733-746.
Zhang J, Zhang H F, Lu X X. Zircon U-Pb Age and Lu-Hf Isotope Constraints on Precambrian Evolution of Continental Crust in the Songshan Area, the South-Central North China Craton. Precambrian Research, 2013, 226: 1-20.
Zhang R Y, Zhang C L, Sun Y. Crustal Reworking in the North China Craton at ≈2.5 Ga: Evidence from Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the TTG Gneisses in the Zhongtiao Mountain. Acta Petrologica Sinica, 2013, 29(7): 2265-2280.
Zhang R Y. The Composition and Evolution of the Sushui Complex in the Zhongtiao Mountains, the South of North China Craton: [Dissertation], 2015, Xi’an: Northwest University, 29-140.
Zhao G C, Wilde S A, Cawood P A, . Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 1998, 40(8): 706-721.
Zhao G C, Sun M, Wilde S A. Major Tectonic Units of the North China Craton and Their Paleoproterozoic Assembly. Science in China (Earth Sciences), 2002, 32(7): 538-549.
Zhao G C, Sun M, Wilde S A, . Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136(2): 177-202.
Zhao G C, Zhai M G. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 2013, 23(4): 1207-1240.
Zhao J H, Zhou M F. Melting of Newly Formed Mafic Crust for the Formation of Neoproterozoic I-Type Granite in the Hannan Region, South China. The Journal of Geology, 2009, 117(1): 54-70.
Zhao J H, Zhou M F, Zheng J P. Constraints from Zircon U-Pb Ages, O and Hf Isotopic Compositions on the Origin of Neoproterozoic Peraluminous Granitoids from the Jiangnan Fold Belt, South China. Contributions to Mineralogy and Petrology, 2013, 166(5): 1505-1519.
Zhao J H, Zhou M F, Zheng J P, . Neoproterozoic Tonalite and Trondhjemite in the Huangling Complex, South China: Crustal Growth and Reworking in a Continental Arc Environment. American Journal of Science, 2013, 313(6): 540-583.
Zhao Y, Li N B, Jiang Y H, . Petrogenesis of the Late Archean (≈2.5 Ga) Na- and K-Rich Granitoids in the Zhongtiao-Wangwu Region and Its Tectonic Significance for the Crustal Evolution of the North China Craton. Precambrian Research, 2017, 303: 590-603.
Zheng J P, Griffin W L, O’Reilly S Y, . 3.6 Ga Lower Crust in Central China: New Evidence on the Assembly of the North China Craton. Geology, 2004, 32(3): 229-232.
Zhou Y Y, Zhao T P, Zhai M G, . Petrogenesis of the Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton: Implications for Crustal Accretion and Transformation. Precambrian Research, 2014, 255: 514-537.
Zhou Y Y, Zhao T P, Sun Q Y, . Petrogenesis of the Neoarchean Diorite-Granite Association in the Wangwushan Area, Southern North China Craton: Implications for Continental Crust Evolution. Precambrian Research, 2017.
Zhou Y Y, Zhao T P, Sun Q Y, . Geochronological and Geochemical Constraints on the Petrogenesis of the 2.6–2.5 Ga Amphibolites, Low- and High-Al TTGs in the Wangwushan Area, Southern North China Craton: Implications for the Neoarchean Crustal Evolution. Precambrian Research, 2018, 307: 93-114.
Zhu D C, Mo X X, Wang L Q, . Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China Series D: Earth Sciences, 2009, 52(9): 1223-1239.
Zhu X Y, Zhai M G, Chen F K, . ≈2.7-Ga Crustal Growth in the North China Craton: Evidence from Zircon U-Pb Ages and Hf Isotopes of the Sushui Complex in the Zhongtiao Terrane. Journal of Geology, 2013, 121(3): 239-254.

Accesses

Citations

Detail

Sections
Recommended

/