Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia

Chaowen Huang , Gaofeng Du , Huajun Jiang , Jianfeng Xie , Daohan Zha , Huan Li , Chun-Kit Lai

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 131 -141.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 131 -141. DOI: 10.1007/s12583-019-0859-z
Article

Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia

Author information +
History +
PDF

Abstract

The Anjing Hitam Pb-Zn deposit in northern Sumatra (Indonesia) is one of the largest Pb-Zn deposits in the region. The stratiform orebodies are mainly hosted in the middle member of the Carboniferous-Permian Kluet Formation of the Tapanuli Group. Mineral paragenesis and crosscutting relationships suggest a two-stage Pb-Zn mineralization: (I) sedimentary and (II) hydrothermal mineralization. Ore-related calcite from both stages I and II contains mainly liquid- and gas-liquid two-phase-type fluid inclusions (FI). For stage I ore-forming fluids, FI homogenization temperatures (T h) are 105 to 199 °C, and the salinities are 9.6 wt.% to 16.6 wt.% NaCleqiv, reflecting low temperature and medium-low salinity; whereas in stage II, the T h (206 to 267 °C) and salinity (19.0 wt.% to 22.5 wt.% NaCleqiv) are considerably higher. Fluid inclusion and C-O isotope characteristics suggest that the stage I ore-forming fluids were mainly derived from a mixture of seawater and magmatic fluids (probably from deep-lying plutons), whereas the stage II ore-forming fluids were likely magmatic-derived with wall rock input. We propose that the Anjing Hitam deposit was a Carboniferous exhalative sedimentary (SEDEX) deposit overprinted by the Pleistocene vein-style magmatic-hydrothermal mineralization.

Keywords

Anjing Hitam / SEDEX / C-O isotopes / fluid inclusion / Sumatra / Indonesia

Cite this article

Download citation ▾
Chaowen Huang, Gaofeng Du, Huajun Jiang, Jianfeng Xie, Daohan Zha, Huan Li, Chun-Kit Lai. Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia. Journal of Earth Science, 2019, 30(1): 131-141 DOI:10.1007/s12583-019-0859-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Badham J. P. N., Williams P. J. Genetic and Exploration Models for Sulfide Ores in Metaophiolites, Northwest Spain. Economic Geology, 1981, 76(8): 2118-2127.

[2]

Barber A. J., Crow M. J. An Evaluation of Plate Tectonic Models for the Development of Sumatra. Gondwana Research, 2003, 6(1): 1-28.

[3]

Basuki N. I. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-Type Zn-Pb Deposits: Identifying Thresholds for Metal Transport. Exploration and Mining Geology, 2002, 1-17.

[4]

Betts P. G., Giles D., Lister G. S. Tectonic Environment of Shale-Hosted Massive Sulfide Pb-Zn-Ag Deposits of Proterozoic Northeastern Australia. Economic Geology, 2003, 98(3): 557-576.

[5]

Betts P. G., Lister G. S. Geodynamically Indicated Targeting Strategy for Shale-Hosted Massive Sulfide Pb-Zn-Ag Mineralisation in the Western Fold Belt, Mt Isa Terrane. Australian Journal of Earth Sciences, 2002, 49(6): 985-1010.

[6]

Brown P. E., Lamb W. M. P-V-T Properties of Fluids in the System H2O±CO2±NaCl: New Graphical Presentations and Implications for Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 1989, 53(6): 1209-1221.

[7]

Burrett C., Zaw K., Meffre S., . The Configuration of Greater Gondwana—Evidence from LA ICPMS, U-Pb Geochronology of Detrital Zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 2014, 26(1): 31-51.

[8]

Cameron N. R., Bennett J. D., Bridge D. M., . The Geology of the Tapaktuan Quadrangle (0519), Sumatra. Scale 1: 250 000, 1982.

[9]

Cameron N. R., Clarke M. C. G., Aldiss D. T., . The Geological Evolution of Northern Sumatra. Indonesian Petroleum Association, 1980, 1: 149-187.

[10]

Cao D. T., Tuyen N. H., Le V. D., . Evolution of Faulting Tectonics in Southeast Asia. Crustal Deformation & Earthquake, 2005, 25(1): 51-60.

[11]

Chen Y. J., Ni P., Fan H. R., . Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 2007, 23(9): 2085-2108.

[12]

Cooke D. R., Bull S. W., Large R. R., . The Importance of Oxidized Brines for the Formation of Australian Proterozoic Stratiform Sediment-Hosted Pb-Zn (Sedex) Deposits. Economic Geology, 2000, 95(1): 1-18.

[13]

Crow M. J., Barber A. J. Map: Simplified Geological Map of Sumatra, 2005.

[14]

Crow M. J., van Leeuwen T. M. Metallic Mineral Deposits, 2005, 147-174.

[15]

Deng J., Wang C. M., Bagas L., . Cretaceous-Cenozoic Tectonic History of the Jiaojia Fault and Gold Mineralization in the Jiaodong Peninsula, China: Constraints from Zircon U-Pb, Illite K-Ar, and Apatite Fission Track Thermochronometry. Mineralium Deposita, 2015, 50(8): 987-1006.

[16]

Deng J., Wang Q. F., Li G. J. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 2017, 50: 216-266.

[17]

Gao X. W., Yang Z. Q., Wu X. R. A Discussion on Mineralization within Magmatic Cycles, Sumatra (Indonesia). Geology and Mineral Resources of South China, 2013, 29(4): 299-307.

[18]

Genrich J. F., Bock Y., McCaffrey R., . Distribution of Slip at the Northern Sumatran Fault System, 2000, Journal of Geophysical Research: Solid Earth, 28327-28341.

[19]

Goldstein R. H. Petrographic Analysis of Fluid Inclusions, 2003, 9-53.

[20]

Goodfellow W. D., Lydon J. W. Sedimentary Exhalative (SEDEX) Deposits, 2007, 163-183.

[21]

Han F., Sun H. T. Metallogenic System of SEDEX Type Deposits: A Review. Earth Science Frontiers (China University of Geosciences, Beijing), 1999, 1: 139-142.

[22]

Hoefs J. Stable Isotope Geochemistry, 1973

[23]

Hou Z. Q., Mo X. X., Yang Z. M., . Metallogenesis in the Collisional Orogen of the Qinghai-Tibet Plateau: Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 2006, 33(2): 340-351.

[24]

Hou Z. Q., Yang Z. S., Xu W. Y., . Metallogenesis in Tibetan Collisional Orogenic Belt: I. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 2006, 25(4): 337-358.

[25]

Hu J., Zhang S. T., Zhang G. Z., . Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 2017, 29(1): 130-143.

[26]

Hutchison C. S., Taylor D. Metallogenesis in SE Asia. Journal of the Geological Society, 1978, 135(4): 407-428.

[27]

Jamaludin S. N. F., Pubellier M., Menier D. Structural Restoration of Carbonate Platform in the Southern Part of Central Luconia, Malaysia. Journal of Earth Science, 2017, 29(1): 1-14.

[28]

Janković S. Tectonic Setting and Metallogenesis of the Principal Sectors of the Tethyan Eurasian Metallogenic Belt. Geotectonica et Metallogenia, 2001, 25(1/2): 14-36.

[29]

Kroopnick P., Weiss R. F., Craig H. Total CO2, 13C, and Dissolved Oxygen-18O at Geosecs II in the North Atlantic. Earth and Planetary Science Letters, 1972, 16(1): 103-110.

[30]

Laznicka P. Giant Metallic Deposits: Future Sources of Industrial Metals. Economic Geology, 2006, 101(7): 1445-1446.

[31]

Leach D. L., Bradley D. C., Huston D., . Sediment-Hosted Lead-Zinc Deposits in Earth History. Economic Geology, 2010, 105(3): 593-625.

[32]

Leach D. L., Sangster D. F., Kelley K. D., . Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 2005, 100: 561-607.

[33]

Li H., Sun H. S., Wu J. H., . Re-Os and U-Pb Geochronology of the Shazigou Mo Polymetallic Ore Field, Inner Mongolia: Implications for Permian-Triassic Mineralization at the Northern Margin of the North China Craton. Ore Geology Reviews, 2017, 83: 287-299.

[34]

Li H., Xi X. S. Sedimentary Fans: A New Genetic Model for Sedimentary Exhalative Ore Deposits. Ore Geology Reviews, 2015, 65: 375-389.

[35]

Li H., Xi X. S., Wu C. M., . Genesis of the Zhaokalong Fe-Cu Polymetallic Deposit at Yushu, China: Evidence from Ore Geochemistry and Fluid Inclusions. Acta Geologica Sinica: English Edition, 2013, 87(2): 486-500.

[36]

Li K., Zhao S., Tang Z., . Fluid Sources and Ore Genesis of the Pb-Zn Deposits of Huayuan Ore-Concentrated District, Northwest Hunan Province, China. Earth Science—Journal of China University of Geosciences, 2018, 43(7): 2449-2464.

[37]

Liu J. L., Wang A. J., Xia H. R., . Cracking Mechanisms during Galena Mineralization in a Sandstone-Hosted Lead-Zinc Ore Deposit: Case Study of the Jinding Giant Sulfide Deposit, Yunnan, SW China. Mineralium Deposita, 2010, 45(6): 567-582.

[38]

Liu Y. C., Hou Z. Q., Yang Z. S., . Some Insights and Advances in Study of Mississippi Valley-Type (MVT) Lead-Zinc Deposits. Mineral Deposits, 2008, 27(2): 253-264.

[39]

Liu Y., Zhu Z. M., Chen C., . Geochemical and Mineralogical Characteristics of Weathered Ore in the Dalucao REE Deposit, Mianning-Dechang REE Belt, Western Sichuan Province, Southwestern China. Ore Geology Reviews, 2015, 71: 437-456.

[40]

Lu H. Z., Fan H. R., Ni P., . Fluid Inclusions. Science Press, 2004.

[41]

Lu H. Z., Shan Q. Composition of Ore Forming Fluids in Metal Deposits and Fluid Inclusion. Acta Petrologica Sinica, 2015, 31(4): 1108-1116.

[42]

Lydon J. W. Applications of Computer Modeling to the Study of the Genesis of Stratiform Sulfide Deposits. Journal of the International Association for Mathematical Geology, 1983, 15(1): 231-232.

[43]

Lydon J. W. Sedimentary Exhalative Sulphides (SEDEX), 1996, 130-152.

[44]

Metcalfe I. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys. Australian Journal of Earth Sciences, 1996, 43(6): 605-623.

[45]

Metcalfe I. The Palaeo-Tethys and Palaeozoic-Mesozoic Tectonic Evolution of Southeast Asia, 1997, 19-24.

[46]

Metcalfe I. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 2002, 20(6): 551-566.

[47]

Miall A. D. Principles of Sedimentary Basin Analysis, 1984

[48]

Ohmoto H., Goldhaber M. B. Sulfur and Carbon Isotopes, 1997, 517-611.

[49]

Pei R. F., Mei Y. X., Qu H. Y., . New Recognized Intellect for Prospecting Large-Superlarge Mineral Deposits. Mineral Deposits, 2013, 34(4): 661-672.

[50]

Reynolds N. A. Geology of the Anjing Hitam Resource, Dairi Project, North Sumatra, Indonesia, 2004.

[51]

Roedder E. Fluid Inclusions, 1984

[52]

Russell M. J. Major Sediment-Hosted Zinc+Lead Deposits: Formation from Hydrothermal Convection Cells that Deepen during Crustal Extension, 1983, 251-282.

[53]

Rye R. O., Ohmoto H. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 1974, 69(6): 826-842.

[54]

Şengör A. M. C. Mid-Mesozoic Closure of Permo-Triassic Tethys and Its Implications. Nature, 1979, 279(5714): 590-593.

[55]

Şengör A. M. C. Tectonics of the Tethysides: Orogenic Collage Development in a Collisional Setting. Annual Review of Earth and Planetary Sciences, 1987, 15(1): 213-244.

[56]

Sheppard S. M. F., Nielsen R. L., Taylor H. P. Hydrogen and Oxygen Isotope Ratios in Minerals from Porphyry Copper Deposits. Economic Geology, 1971, 66(4): 515-542.

[57]

Silic J., Seed R. The Geophysics of the Anjing Hitam Deposit: From Mapping Shales to a Major Discovery. ASEG Extended Abstracts, 2001, 2001(1): 1-4.

[58]

Sillitoe R. H. Metallogenic Evolution of a Collisional Mountain Belt in Pakistan: A Preliminary Analysis. Journal of the Geological Society, 1978, 135(4): 377-387.

[59]

Stöcklin J. Possible Ancient Continental Margins in Iran, 1974, 873-887.

[60]

Sun H. S., Wu G. B., Liu L., . Research Advances in Metallogenic Tectonic Environment of Massive Sulfide Deposits. Earth Science—Journal of China University of Geosciences, 2011, 36(2): 299-306.

[61]

Taylor H. P. J. Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits. Geochemistry of Hydrothermal Ore Deposits, 1997, 2: 229-302.

[62]

Turner R. J. W. Formation of Phanerozoic Stratiform Sediment-Hosted Zinc-Lead Deposits: Evidence for the Critical Role of Ocean Anoxia. Chemical Geology, 1992, 99: 165-188.

[63]

Ueno K. The Permian Fusulinoidean Faunas of the Sibumasu and Baoshan Blocks: Their Implications for the Paleogeographic and Paleoclimatologic Reconstruction of the Cimmerian Continent. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193(1): 1-24.

[64]

Ulmer P., Trommsdorff V. Serpentine Stability to Mantle Depths and Subduction-Related Magmatism. Science, 1995, 268(5212): 858-861.

[65]

Wang C. M., Bagas L., Lu Y. J., . Terrane Boundary and Spatio-Temporal Distribution of Ore Deposits in the Sanjiang Tethyan Orogen: Insights from Zircon Hf-Isotopic Mapping. Earth-Science Reviews, 2016, 156: 39-65.

[66]

Wang C. M., Deng J., Bagas L., . Zircon Hf-Isotopic Mapping for Understanding Crustal Architecture and Metallogenesis in the Eastern Qinling Orogen. Gondwana Research, 2017, 50: 293-310.

[67]

Wang C. M., Deng J., Carranza E. J. M., . Nature, Diversity and Temporal-Spatial Distributions of Sediment-Hosted Pb-Zn Deposits in China. Ore Geology Reviews, 2014, 56: 327-351.

[68]

Wang L. J. Analysis and Study of the Composition of Fluid Inclusions. Geological Review, 1998, 44(5): 496-501.

[69]

Wang X., Gao J., He S., . Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China: Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 2017, 28(2): 315-332.

[70]

Wilkinson J. J. Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives, 2014, 219-249.

[71]

Wu J., Suppe J. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 2018, 29(6): 1304-1318.

[72]

Zhang D. H. Aqueous Phase Composition Characteristics of Mineral Fluid Inclusions and Its Significance in Ore Genesis. Earth Science—Journal of China University of Geosciences, 1992, 17(6): 59-70.

[73]

Zhang H. R., Hou Z. Q., Yang Z. M. Metallogenesis and Geodynamics of Tethyan Metallogenic Domain: A Review. Mineral Deposits, 2010, 29(1): 113-133.

[74]

Zheng Y. F. Theoretical Modeling of Stable Isotope Systems and Its Application to the Geochemistry of Hydrothermal Ore Deposits. Mineral Deposits, 2001, 20(1): 57-70.

[75]

Zhou Y., Duan Q. F., Cao L., . Microthermonmetry and Characteristic Elements Determination of the Fluid Inclusions of the Huayuan Lead-Zinc Deposit in Western Hunan. Earth Science—Journal of China University of Geosciences, 2018, 43(7): 2465-2483.

[76]

Zhu H. P., Wang L. J., Liu J. M. Determination of Quadruple Mass Spectrometer for Gaseous Composition of Fluid Inclusion from Different Mineralization Stages. Acta Petrologica Sinica, 2003, 19(2): 314-318.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/