Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia

Chaowen Huang, Gaofeng Du, Huajun Jiang, Jianfeng Xie, Daohan Zha, Huan Li, Chun-Kit Lai

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 131-141.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 131-141. DOI: 10.1007/s12583-019-0859-z
Article

Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia

Author information +
History +

Abstract

The Anjing Hitam Pb-Zn deposit in northern Sumatra (Indonesia) is one of the largest Pb-Zn deposits in the region. The stratiform orebodies are mainly hosted in the middle member of the Carboniferous-Permian Kluet Formation of the Tapanuli Group. Mineral paragenesis and crosscutting relationships suggest a two-stage Pb-Zn mineralization: (I) sedimentary and (II) hydrothermal mineralization. Ore-related calcite from both stages I and II contains mainly liquid- and gas-liquid two-phase-type fluid inclusions (FI). For stage I ore-forming fluids, FI homogenization temperatures (T h) are 105 to 199 °C, and the salinities are 9.6 wt.% to 16.6 wt.% NaCleqiv, reflecting low temperature and medium-low salinity; whereas in stage II, the T h (206 to 267 °C) and salinity (19.0 wt.% to 22.5 wt.% NaCleqiv) are considerably higher. Fluid inclusion and C-O isotope characteristics suggest that the stage I ore-forming fluids were mainly derived from a mixture of seawater and magmatic fluids (probably from deep-lying plutons), whereas the stage II ore-forming fluids were likely magmatic-derived with wall rock input. We propose that the Anjing Hitam deposit was a Carboniferous exhalative sedimentary (SEDEX) deposit overprinted by the Pleistocene vein-style magmatic-hydrothermal mineralization.

Keywords

Anjing Hitam / SEDEX / C-O isotopes / fluid inclusion / Sumatra / Indonesia

Cite this article

Download citation ▾
Chaowen Huang, Gaofeng Du, Huajun Jiang, Jianfeng Xie, Daohan Zha, Huan Li, Chun-Kit Lai. Ore-Forming Fluids Characteristics and Metallogenesis of the Anjing Hitam Pb-Zn Deposit in Northern Sumatra, Indonesia. Journal of Earth Science, 2019, 30(1): 131‒141 https://doi.org/10.1007/s12583-019-0859-z

References

Badham J. P. N., Williams P. J. Genetic and Exploration Models for Sulfide Ores in Metaophiolites, Northwest Spain. Economic Geology, 1981, 76(8): 2118-2127.
CrossRef Google scholar
Barber A. J., Crow M. J. An Evaluation of Plate Tectonic Models for the Development of Sumatra. Gondwana Research, 2003, 6(1): 1-28.
CrossRef Google scholar
Basuki N. I. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-Type Zn-Pb Deposits: Identifying Thresholds for Metal Transport. Exploration and Mining Geology, 2002, 1-17.
Betts P. G., Giles D., Lister G. S. Tectonic Environment of Shale-Hosted Massive Sulfide Pb-Zn-Ag Deposits of Proterozoic Northeastern Australia. Economic Geology, 2003, 98(3): 557-576.
CrossRef Google scholar
Betts P. G., Lister G. S. Geodynamically Indicated Targeting Strategy for Shale-Hosted Massive Sulfide Pb-Zn-Ag Mineralisation in the Western Fold Belt, Mt Isa Terrane. Australian Journal of Earth Sciences, 2002, 49(6): 985-1010.
CrossRef Google scholar
Brown P. E., Lamb W. M. P-V-T Properties of Fluids in the System H2O±CO2±NaCl: New Graphical Presentations and Implications for Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 1989, 53(6): 1209-1221.
CrossRef Google scholar
Burrett C., Zaw K., Meffre S., . The Configuration of Greater Gondwana—Evidence from LA ICPMS, U-Pb Geochronology of Detrital Zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 2014, 26(1): 31-51.
CrossRef Google scholar
Cameron N. R., Bennett J. D., Bridge D. M., . The Geology of the Tapaktuan Quadrangle (0519), Sumatra. Scale 1: 250 000, 1982.
Cameron N. R., Clarke M. C. G., Aldiss D. T., . The Geological Evolution of Northern Sumatra. Indonesian Petroleum Association, 1980, 1: 149-187.
Cao D. T., Tuyen N. H., Le V. D., . Evolution of Faulting Tectonics in Southeast Asia. Crustal Deformation & Earthquake, 2005, 25(1): 51-60.
Chen Y. J., Ni P., Fan H. R., . Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 2007, 23(9): 2085-2108.
Cooke D. R., Bull S. W., Large R. R., . The Importance of Oxidized Brines for the Formation of Australian Proterozoic Stratiform Sediment-Hosted Pb-Zn (Sedex) Deposits. Economic Geology, 2000, 95(1): 1-18.
CrossRef Google scholar
Crow M. J., Barber A. J. Map: Simplified Geological Map of Sumatra, 2005.
Crow M. J., van Leeuwen T. M. Metallic Mineral Deposits, 2005, 147-174.
Deng J., Wang C. M., Bagas L., . Cretaceous-Cenozoic Tectonic History of the Jiaojia Fault and Gold Mineralization in the Jiaodong Peninsula, China: Constraints from Zircon U-Pb, Illite K-Ar, and Apatite Fission Track Thermochronometry. Mineralium Deposita, 2015, 50(8): 987-1006.
CrossRef Google scholar
Deng J., Wang Q. F., Li G. J. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 2017, 50: 216-266.
CrossRef Google scholar
Gao X. W., Yang Z. Q., Wu X. R. A Discussion on Mineralization within Magmatic Cycles, Sumatra (Indonesia). Geology and Mineral Resources of South China, 2013, 29(4): 299-307.
Genrich J. F., Bock Y., McCaffrey R., . Distribution of Slip at the Northern Sumatran Fault System, 2000, Journal of Geophysical Research: Solid Earth, 28327-28341.
Goldstein R. H. Petrographic Analysis of Fluid Inclusions, 2003, 9-53.
Goodfellow W. D., Lydon J. W. Sedimentary Exhalative (SEDEX) Deposits, 2007, 163-183.
Han F., Sun H. T. Metallogenic System of SEDEX Type Deposits: A Review. Earth Science Frontiers (China University of Geosciences, Beijing), 1999, 1: 139-142.
Hoefs J. Stable Isotope Geochemistry, 1973
CrossRef Google scholar
Hou Z. Q., Mo X. X., Yang Z. M., . Metallogenesis in the Collisional Orogen of the Qinghai-Tibet Plateau: Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 2006, 33(2): 340-351.
Hou Z. Q., Yang Z. S., Xu W. Y., . Metallogenesis in Tibetan Collisional Orogenic Belt: I. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 2006, 25(4): 337-358.
Hu J., Zhang S. T., Zhang G. Z., . Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 2017, 29(1): 130-143.
CrossRef Google scholar
Hutchison C. S., Taylor D. Metallogenesis in SE Asia. Journal of the Geological Society, 1978, 135(4): 407-428.
CrossRef Google scholar
Jamaludin S. N. F., Pubellier M., Menier D. Structural Restoration of Carbonate Platform in the Southern Part of Central Luconia, Malaysia. Journal of Earth Science, 2017, 29(1): 1-14.
Janković S. Tectonic Setting and Metallogenesis of the Principal Sectors of the Tethyan Eurasian Metallogenic Belt. Geotectonica et Metallogenia, 2001, 25(1/2): 14-36.
Kroopnick P., Weiss R. F., Craig H. Total CO2, 13C, and Dissolved Oxygen-18O at Geosecs II in the North Atlantic. Earth and Planetary Science Letters, 1972, 16(1): 103-110.
CrossRef Google scholar
Laznicka P. Giant Metallic Deposits: Future Sources of Industrial Metals. Economic Geology, 2006, 101(7): 1445-1446.
CrossRef Google scholar
Leach D. L., Bradley D. C., Huston D., . Sediment-Hosted Lead-Zinc Deposits in Earth History. Economic Geology, 2010, 105(3): 593-625.
CrossRef Google scholar
Leach D. L., Sangster D. F., Kelley K. D., . Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 2005, 100: 561-607.
Li H., Sun H. S., Wu J. H., . Re-Os and U-Pb Geochronology of the Shazigou Mo Polymetallic Ore Field, Inner Mongolia: Implications for Permian-Triassic Mineralization at the Northern Margin of the North China Craton. Ore Geology Reviews, 2017, 83: 287-299.
CrossRef Google scholar
Li H., Xi X. S. Sedimentary Fans: A New Genetic Model for Sedimentary Exhalative Ore Deposits. Ore Geology Reviews, 2015, 65: 375-389.
CrossRef Google scholar
Li H., Xi X. S., Wu C. M., . Genesis of the Zhaokalong Fe-Cu Polymetallic Deposit at Yushu, China: Evidence from Ore Geochemistry and Fluid Inclusions. Acta Geologica Sinica: English Edition, 2013, 87(2): 486-500.
CrossRef Google scholar
Li K., Zhao S., Tang Z., . Fluid Sources and Ore Genesis of the Pb-Zn Deposits of Huayuan Ore-Concentrated District, Northwest Hunan Province, China. Earth Science—Journal of China University of Geosciences, 2018, 43(7): 2449-2464.
CrossRef Google scholar
Liu J. L., Wang A. J., Xia H. R., . Cracking Mechanisms during Galena Mineralization in a Sandstone-Hosted Lead-Zinc Ore Deposit: Case Study of the Jinding Giant Sulfide Deposit, Yunnan, SW China. Mineralium Deposita, 2010, 45(6): 567-582.
CrossRef Google scholar
Liu Y. C., Hou Z. Q., Yang Z. S., . Some Insights and Advances in Study of Mississippi Valley-Type (MVT) Lead-Zinc Deposits. Mineral Deposits, 2008, 27(2): 253-264.
Liu Y., Zhu Z. M., Chen C., . Geochemical and Mineralogical Characteristics of Weathered Ore in the Dalucao REE Deposit, Mianning-Dechang REE Belt, Western Sichuan Province, Southwestern China. Ore Geology Reviews, 2015, 71: 437-456.
CrossRef Google scholar
Lu H. Z., Fan H. R., Ni P., . Fluid Inclusions. Science Press, 2004.
Lu H. Z., Shan Q. Composition of Ore Forming Fluids in Metal Deposits and Fluid Inclusion. Acta Petrologica Sinica, 2015, 31(4): 1108-1116.
Lydon J. W. Applications of Computer Modeling to the Study of the Genesis of Stratiform Sulfide Deposits. Journal of the International Association for Mathematical Geology, 1983, 15(1): 231-232.
CrossRef Google scholar
Lydon J. W. Sedimentary Exhalative Sulphides (SEDEX), 1996, 130-152.
Metcalfe I. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys. Australian Journal of Earth Sciences, 1996, 43(6): 605-623.
CrossRef Google scholar
Metcalfe I. The Palaeo-Tethys and Palaeozoic-Mesozoic Tectonic Evolution of Southeast Asia, 1997, 19-24.
Metcalfe I. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 2002, 20(6): 551-566.
CrossRef Google scholar
Miall A. D. Principles of Sedimentary Basin Analysis, 1984
CrossRef Google scholar
Ohmoto H., Goldhaber M. B. Sulfur and Carbon Isotopes, 1997, 517-611.
Pei R. F., Mei Y. X., Qu H. Y., . New Recognized Intellect for Prospecting Large-Superlarge Mineral Deposits. Mineral Deposits, 2013, 34(4): 661-672.
Reynolds N. A. Geology of the Anjing Hitam Resource, Dairi Project, North Sumatra, Indonesia, 2004.
Roedder E. Fluid Inclusions, 1984
CrossRef Google scholar
Russell M. J. Major Sediment-Hosted Zinc+Lead Deposits: Formation from Hydrothermal Convection Cells that Deepen during Crustal Extension, 1983, 251-282.
Rye R. O., Ohmoto H. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 1974, 69(6): 826-842.
CrossRef Google scholar
Şengör A. M. C. Mid-Mesozoic Closure of Permo-Triassic Tethys and Its Implications. Nature, 1979, 279(5714): 590-593.
CrossRef Google scholar
Şengör A. M. C. Tectonics of the Tethysides: Orogenic Collage Development in a Collisional Setting. Annual Review of Earth and Planetary Sciences, 1987, 15(1): 213-244.
CrossRef Google scholar
Sheppard S. M. F., Nielsen R. L., Taylor H. P. Hydrogen and Oxygen Isotope Ratios in Minerals from Porphyry Copper Deposits. Economic Geology, 1971, 66(4): 515-542.
CrossRef Google scholar
Silic J., Seed R. The Geophysics of the Anjing Hitam Deposit: From Mapping Shales to a Major Discovery. ASEG Extended Abstracts, 2001, 2001(1): 1-4.
CrossRef Google scholar
Sillitoe R. H. Metallogenic Evolution of a Collisional Mountain Belt in Pakistan: A Preliminary Analysis. Journal of the Geological Society, 1978, 135(4): 377-387.
CrossRef Google scholar
Stöcklin J. Possible Ancient Continental Margins in Iran, 1974, 873-887.
Sun H. S., Wu G. B., Liu L., . Research Advances in Metallogenic Tectonic Environment of Massive Sulfide Deposits. Earth Science—Journal of China University of Geosciences, 2011, 36(2): 299-306.
Taylor H. P. J. Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits. Geochemistry of Hydrothermal Ore Deposits, 1997, 2: 229-302.
Turner R. J. W. Formation of Phanerozoic Stratiform Sediment-Hosted Zinc-Lead Deposits: Evidence for the Critical Role of Ocean Anoxia. Chemical Geology, 1992, 99: 165-188.
CrossRef Google scholar
Ueno K. The Permian Fusulinoidean Faunas of the Sibumasu and Baoshan Blocks: Their Implications for the Paleogeographic and Paleoclimatologic Reconstruction of the Cimmerian Continent. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193(1): 1-24.
CrossRef Google scholar
Ulmer P., Trommsdorff V. Serpentine Stability to Mantle Depths and Subduction-Related Magmatism. Science, 1995, 268(5212): 858-861.
CrossRef Google scholar
Wang C. M., Bagas L., Lu Y. J., . Terrane Boundary and Spatio-Temporal Distribution of Ore Deposits in the Sanjiang Tethyan Orogen: Insights from Zircon Hf-Isotopic Mapping. Earth-Science Reviews, 2016, 156: 39-65.
CrossRef Google scholar
Wang C. M., Deng J., Bagas L., . Zircon Hf-Isotopic Mapping for Understanding Crustal Architecture and Metallogenesis in the Eastern Qinling Orogen. Gondwana Research, 2017, 50: 293-310.
CrossRef Google scholar
Wang C. M., Deng J., Carranza E. J. M., . Nature, Diversity and Temporal-Spatial Distributions of Sediment-Hosted Pb-Zn Deposits in China. Ore Geology Reviews, 2014, 56: 327-351.
CrossRef Google scholar
Wang L. J. Analysis and Study of the Composition of Fluid Inclusions. Geological Review, 1998, 44(5): 496-501.
Wang X., Gao J., He S., . Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China: Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 2017, 28(2): 315-332.
CrossRef Google scholar
Wilkinson J. J. Sediment-Hosted Zinc-Lead Mineralization: Processes and Perspectives, 2014, 219-249.
Wu J., Suppe J. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 2018, 29(6): 1304-1318.
CrossRef Google scholar
Zhang D. H. Aqueous Phase Composition Characteristics of Mineral Fluid Inclusions and Its Significance in Ore Genesis. Earth Science—Journal of China University of Geosciences, 1992, 17(6): 59-70.
Zhang H. R., Hou Z. Q., Yang Z. M. Metallogenesis and Geodynamics of Tethyan Metallogenic Domain: A Review. Mineral Deposits, 2010, 29(1): 113-133.
Zheng Y. F. Theoretical Modeling of Stable Isotope Systems and Its Application to the Geochemistry of Hydrothermal Ore Deposits. Mineral Deposits, 2001, 20(1): 57-70.
Zhou Y., Duan Q. F., Cao L., . Microthermonmetry and Characteristic Elements Determination of the Fluid Inclusions of the Huayuan Lead-Zinc Deposit in Western Hunan. Earth Science—Journal of China University of Geosciences, 2018, 43(7): 2465-2483.
CrossRef Google scholar
Zhu H. P., Wang L. J., Liu J. M. Determination of Quadruple Mass Spectrometer for Gaseous Composition of Fluid Inclusion from Different Mineralization Stages. Acta Petrologica Sinica, 2003, 19(2): 314-318.

Accesses

Citations

Detail

Sections
Recommended

/