Exploration and Sources of Bauxite Deposit in the Boloven Plateau, Southern Laos

Yongzhen Long , Xiaoyong Yang , Mu Yang , Dexian Zhang

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 121 -130.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 121 -130. DOI: 10.1007/s12583-019-0857-1
Article

Exploration and Sources of Bauxite Deposit in the Boloven Plateau, Southern Laos

Author information +
History +
PDF

Abstract

The Boloven bauxite deposit occurs either in the weathered basalt (alkali basalt and tholeiite), or in the Cretaceous sandstone. It is generally agreed that the bauxite deposits/laterites overlying the alkali basalt and tholeiite were derived from weathering of underlying basalt, however, the origin of bauxite deposit overlying the sandstone remains controversial. Chondrite-normalized REE patterns show that the bauxite ores/laterites overlying the sandstone exhibit quite similar chondrite-normalized REE patterns to those overlying the alkali basalt. Diagram of Al-Ti-Zr shows that the bauxite ores/laterites overlying the sandstone, tholeiite and alkali basalt are close to each other and to the calc-alkaline suite, however, significantly different from the sandstone and shales. Binary diagram of log Nb/Y vs log Zr/Ti further indicates that the parent rocks of bauxite ores/laterites overlying the sandstone belong to the suit of ultra-alkali to alkali basalt. Multivariate statistical analysis of geochemical data exhibit that the geochemical characteristics of HREE, Y, LREE and Al2O3 for bauxite ores/laterites overlying the sandstone are similar to those overlying the alkali basalt (15.7 Ma), obviously different from those overlying the tholeiite (1.2 to 0.5 Ma). Consequently, it can be inferred that the bauxite deposits/laterites overlying the sandstone were derived from the alkali basalt.

Keywords

late ritic-type bauxite / XRD / datum processing / exploration / sources / Boloven Plateau / Laos

Cite this article

Download citation ▾
Yongzhen Long, Xiaoyong Yang, Mu Yang, Dexian Zhang. Exploration and Sources of Bauxite Deposit in the Boloven Plateau, Southern Laos. Journal of Earth Science, 2019, 30(1): 121-130 DOI:10.1007/s12583-019-0857-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anders E., Grevesse N. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 1989, 53(1): 197-214.

[2]

Bárdossy G., Aleva G. J. J. Lateritic Bauxites, 1990, 1-624.

[3]

Bogatyrev B. A., Zhukov V. V., Tsekhovsky Y. G. Formation Conditions and Regularities of the Distribution of Large and Superlarge Bauxite Deposits. Lithology and Mineral Resources, 2009, 44(2): 135-151.

[4]

Cumberland S. A., Douglas G., Grice K., . Uranium Mobility in Organic Matter-Rich Sediments: A Review of Geological and Geochemical Processes. Earth-Science Reviews, 2016, 159: 160-185.

[5]

Dill H. G. Residual Clay Deposits on Basement Rocks: The Impact of Climate and the Geological Setting on Supergene Argillitization in the Bohemian Massif (Central Europe) and Across the Globe. Earth-Science Reviews, 2017, 165: 1-58.

[6]

Drew L. J., Grunsky E. C., Sutphin D. M., . Multivariate Analysis of the Geochemistry and Mineralogy of Soils along Two Continental-Scale Transects in North America. Science of the Total Environment, 2010, 409(1): 218-227.

[7]

Fan P. F. Accreted Terranes and Mineral Deposits of Indochina. Journal of Asian Earth Sciences, 2000, 18(3): 343-350.

[8]

Fayek M., Horita J., Ripley E. M. The Oxygen Isotopic Composition of Uranium Minerals: A Review. Ore Geology Reviews, 2011, 41(1): 1-21.

[9]

Garcia D., Fonteilles M., Moutte J. Sedimentary Fractionations between Al, Ti, and Zr and the Genesis of Strongly Peraluminous Granites. The Journal of Geology, 1994, 102(4): 411-422.

[10]

Grunsky E. C. The Interpretation of Geochemical Survey Data. Geochemistry: Exploration, Environment, Analysis, 2010, 10(1): 27-74.

[11]

Hanilçi N. Geological and Geochemical Evolution of the Bolkardaği Bauxite Deposits, Karaman, Turkey: Transformation from Shale to Bauxite. Journal of Geochemical Exploration, 2013, 133: 118-137.

[12]

Jadhav G. N., Sharma N., Sen P. Characterization of Bauxite Deposits from Kachchh Area, Gujarat. Journal of the Geological Society of India, 2012, 80(3): 351-362.

[13]

Karinen T., Korkiakoski E., Phichith P. Laos-Invest in Mining. A Country Issue for Promoting Exploration and Mining in Lao PDR, May, 2011, 1-15.

[14]

Levitan D. M., Zipper C. E., Donovan P., . Statistical Analysis of Soil Geochemical Data to Identify Pathfinders Associated with Mineral Deposits: An Example from the Coles Hill Uranium Deposit, Virginia, USA. Journal of Geochemical Exploration, 2015, 154: 238-251.

[15]

Li Z. H., Din J., Xu J. S., . Discovery of the REE Minerals in the Wulong-Nanchuan Bauxite Deposits, Chongqing, China: Insights on Conditions of Formation and Processes. Journal of Geochemical Exploration, 2013, 133: 88-102.

[16]

Liu X. F., Wang Q. F., Feng Y. W., . Genesis of the Guangou Karstic Bauxite Deposit in Western Henan, China. Ore Geology Reviews, 2013, 55: 162-175.

[17]

Long Y. Z., Chi G. X., Liu J. P., . Trace and Rare Earth Elements Constraints on the Sources of the Yunfeng Paleo-Karstic Bauxite Deposit in the Xiuwen-Qingzhen Area, Guizhou, China. Ore Geology Reviews, 2017, 91: 404-418.

[18]

Luo Z., Liu Z., Li J., . Geological Characteristics and Genesis of Bauxite Deposit in Paakxong Country, Chanmpasak Province, Laos. Mineral exploration., 2011, 2(3): 304-310.

[19]

Mameli P., Mongelli G., Oggiano G., . Geological, Geochemical and Mineralogical Features of some Bauxite Deposits from Nurra (Western Sardinia, Italy): Insights on Conditions of Formation and Parental Affinity. International Journal of Earth Sciences, 2006, 96(5): 887-902.

[20]

Mongelli G. Ce-Anomalies in the Textural Components of Upper Cretaceous Karst Bauxites from the Apulian Carbonate Platform (Southern Italy). Chemical Geology, 1997, 140(1/2): 69-79.

[21]

Patterson S., Kurtz H., Olson J. Neeley Geology and Resources of Aluminum, U.S.. Geological Survey Professional, 1986, 1-165.

[22]

Pearce J. A. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes., 1996, 12: 79-113.

[23]

Pope G. A. Weathering in the Tropics, and Related Extratropical Processes. Treatise on Geomorphology, 2013, 4: 179-196.

[24]

Qi L., Hu J., Gregoire D. C. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 2000, 51(3): 507-513.

[25]

Qian X., Feng Q. L., Wang Y. J., . Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NW Laos. Journal of Earth Science, 2016, 27(3): 365-377.

[26]

Richardson K. A. The Thorium, Uranium and Zirconium Concentrations in Bauxites and Their Relationship to Bauxite Genesis, 1959, 1-55.

[27]

Sanematsu K., Moriyama T., Sotouky L., . Laterization of Basalts and Sandstone Associated with the Enrichment of Al, Ga and Sc in the Bolaven Plateau, Southern Laos. Bulletin of the Geological Survey of Japan, 2011, 62(3/4): 105-129.

[28]

Sanematsu K., Moriyama T., Sotouky L., . Mobility of Rare Earth Elements in Basalt-Derived Laterite at the Bolaven Plateau, Southern Laos. Resource Geology, 2011, 61(2): 140-158.

[29]

Schellmann W. Geochemical Differentiation in Laterite and Bauxite Formation. Catena, 1994, 21(2/3): 131-143.

[30]

Tapponnier P., Peltzer G., Armijo R. On the Mechanics of the Collision between India and Asia. Geological Society, London, Special Publications, 1986, 19(1): 113-157.

[31]

Vilayhack S., Duangsurigna S., Phomkenthao S. 1: 200 000 Geological Map of Attapu with Report on Geology of the Attapu District, Japan International Cooperation Agency and Department of Geology, 2008, 1-48.

[32]

Wan Y. G., Sheng S. Z., Huang J. C., . The Grid Search Algorithm of Tectonic Stress Tensor Based on Focal Mechanism Data and its Application in the Boundary Zone of China, Vietnam and Laos. Journal of Earth Science, 2016, 27(5): 777-785.

[33]

Wang X. M., Jiao Y. Q., Du Y. S., . REE Mobility and Ce Anomaly in Bauxite Deposit of WZD Area, Northern Guizhou, China. Journal of Geochemical Exploration, 2013, 133: 103-117.

[34]

Wei G. S. Analysis on Minerogenetic Condition and Geological Characteristics of Bolaven Bauxite Ore, Laos, 2011.

[35]

Wilke B. M., Schwertmann U., Murad E. An Occurrence of Polymorphic Halloysite in Granite Saprolite of the Bayerischer Wald, Germany. Clay Minerals, 1978, 13(1): 67-77.

[36]

Zhang J., Feng Q. L., Zhang Z. Tracing Escaping Structure in the Northern Indo-China Peninsula by Openness and Remote Sensing. Journal of Earth Science, 2017, 28(1): 147-160.

[37]

Zhang X. Y., Ma H. Z., Ma Y. Q., . Origin of the Late Cretaceous Potash-Bearing Evaporites in the Vientiane Basin of Laos: δ11B Evidence from Borates. Journal of Asian Earth Sciences, 2013, 62: 812-818.

[38]

Zhao Z., Wang D., Pan H., . REE Geochemistry of a Weathering Profile in Guangxi, Southern China, and Genesis of Ion-Adsorption Type REE Deposit. Earth Science, 2017, 42(10): 1697-1706.

[39]

Zheng T., Deng Y., Lu Z., . Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China. Earth Science, 2017, 42(5): 693-706.

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/